177 lines
7.0 KiB
Python
177 lines
7.0 KiB
Python
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
|
|
|
# --- Do not remove these libs ---
|
|
from functools import reduce
|
|
from typing import Any, Callable, Dict, List
|
|
|
|
import numpy as np # noqa
|
|
import pandas as pd # noqa
|
|
from pandas import DataFrame
|
|
from skopt.space import Categorical, Dimension, Integer, Real # noqa
|
|
|
|
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
|
|
|
# --------------------------------
|
|
# Add your lib to import here
|
|
import talib.abstract as ta # noqa
|
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
|
|
|
|
|
class hyper2(IHyperOpt):
|
|
"""
|
|
This is a Hyperopt template to get you started.
|
|
|
|
More information in the documentation: https://www.freqtrade.io/en/latest/hyperopt/
|
|
|
|
You should:
|
|
- Add any lib you need to build your hyperopt.
|
|
|
|
You must keep:
|
|
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
|
|
|
|
The methods roi_space, generate_roi_table and stoploss_space are not required
|
|
and are provided by default.
|
|
However, you may override them if you need 'roi' and 'stoploss' spaces that
|
|
differ from the defaults offered by Freqtrade.
|
|
Sample implementation of these methods will be copied to `user_data/hyperopts` when
|
|
creating the user-data directory using `freqtrade create-userdir --userdir user_data`,
|
|
or is available online under the following URL:
|
|
https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt_advanced.py.
|
|
"""
|
|
|
|
@staticmethod
|
|
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
"""
|
|
Define the buy strategy parameters to be used by Hyperopt.
|
|
"""
|
|
|
|
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Buy strategy Hyperopt will build and use.
|
|
"""
|
|
conditions = []
|
|
|
|
# GUARDS AND TRENDS
|
|
if params.get('uo-enabled'):
|
|
conditions.append(dataframe['uo'] > params['uo_h'])
|
|
if params.get('angle-enabled'):
|
|
conditions.append(dataframe['angle'] > params['angle_h'])
|
|
if params.get('sar-enabled'):
|
|
conditions.append(params['sar_ratio'] < (dataframe['sar'] - dataframe['close']))
|
|
conditions.append(params['sar_shift'] > (dataframe['sar'] - dataframe['sar'].shift(3)))
|
|
if params.get('macd-enabled'):
|
|
conditions.append(params['macd_value'] > dataframe['macd'])
|
|
conditions.append(params['macdhist_value'] > dataframe['macdhist'])
|
|
conditions.append(params['macdhist_shift'] < (dataframe['macdhist'] - dataframe['macdhist'].shift(3)))
|
|
|
|
# TRIGGERS
|
|
if 'trigger' in params:
|
|
if params['trigger'] == 'macd_cross_signal':
|
|
conditions.append(qtpylib.crossed_above(
|
|
dataframe['macd'], dataframe['macdsignal']
|
|
))
|
|
if params['trigger'] == 'sar':
|
|
conditions.append(qtpylib.crossed_above(
|
|
dataframe['close'], dataframe['sar']
|
|
))
|
|
if params['trigger'] == 'angle':
|
|
conditions.append(qtpylib.crossed_above(
|
|
dataframe['angle'], 0
|
|
))
|
|
|
|
# Check that the candle had volume
|
|
conditions.append(dataframe['volume'] > 0)
|
|
conditions.append(dataframe['angle'] > 0)
|
|
|
|
if conditions:
|
|
dataframe.loc[
|
|
reduce(lambda x, y: x & y, conditions),
|
|
'buy'] = 1
|
|
|
|
return dataframe
|
|
|
|
return populate_buy_trend
|
|
|
|
@staticmethod
|
|
def indicator_space() -> List[Dimension]:
|
|
"""
|
|
Define your Hyperopt space for searching buy strategy parameters.
|
|
"""
|
|
return [
|
|
Integer(0, 100, name='uo_h'),
|
|
Real(-1, 1, name='angle_h'),
|
|
Real(0, 1, name='sar_ratio'),
|
|
Real(0, 1, name='sar_shift'),
|
|
Real(-1, 1, name='macd_value'),
|
|
Real(-1, 1, name='macdhist_value'),
|
|
Real(-1, 1, name='macdhist_shift'),
|
|
Categorical([True, False], name='angle-enabled'),
|
|
Categorical([True, False], name='sar-enabled'),
|
|
Categorical([True, False], name='macd-enabled'),
|
|
Categorical(['sar'], name='trigger')
|
|
]
|
|
|
|
@staticmethod
|
|
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
"""
|
|
Define the sell strategy parameters to be used by Hyperopt.
|
|
"""
|
|
|
|
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Sell strategy Hyperopt will build and use.
|
|
"""
|
|
conditions = []
|
|
|
|
# GUARDS AND TRENDS
|
|
if params.get('sell-uo-enabled'):
|
|
conditions.append(dataframe['uo'] > params['uo_l_s'])
|
|
if params.get('angle-enabled'):
|
|
conditions.append(params['angle_h_s'] < dataframe['angle'])
|
|
if params.get('sar-enabled'):
|
|
conditions.append(params['sar_ratio_s'] < (dataframe['sar'] - dataframe['close']))
|
|
conditions.append(params['sar_shift_s'] < (dataframe['sar'] - dataframe['sar'].shift(3)))
|
|
if params.get('macd-enabled'):
|
|
conditions.append(params['macd_value_s'] > dataframe['macd'])
|
|
conditions.append(params['macdhist_value_s'] > dataframe['macdhist'])
|
|
conditions.append(params['macdhist_shift_s'] > (dataframe['macdhist'] - dataframe['macdhist'].shift(3)))
|
|
|
|
# TRIGGERS
|
|
if 'sell-trigger' in params:
|
|
if params['sell-trigger'] == 'sell-sar_reversal':
|
|
conditions.append(qtpylib.crossed_below(
|
|
dataframe['sar'], dataframe['close']
|
|
))
|
|
|
|
# Check that the candle had volume
|
|
conditions.append(dataframe['volume'] > 0)
|
|
|
|
if conditions:
|
|
dataframe.loc[
|
|
reduce(lambda x, y: x & y, conditions),
|
|
'sell'] = 1
|
|
|
|
return dataframe
|
|
|
|
return populate_sell_trend
|
|
|
|
@staticmethod
|
|
def sell_indicator_space() -> List[Dimension]:
|
|
"""
|
|
Define your Hyperopt space for searching sell strategy parameters.
|
|
"""
|
|
return [
|
|
Integer(0, 100, name='uo_l_s'),
|
|
Real(-1, 1, name='angle_h_s'),
|
|
Real(0, 1, name='sar_ratio_s'),
|
|
Real(0, 1, name='sar_shift_s'),
|
|
Real(-1, 1, name='macd_value_s'),
|
|
Real(-1, 1, name='macdhist_value_s'),
|
|
Real(-1, 1, name='macdhist_shift_s'),
|
|
Categorical([True, False], name='sell-uo-enabled'),
|
|
Categorical([True, False], name='sell-angle-enabled'),
|
|
Categorical([True, False], name='sell-sar-enabled'),
|
|
Categorical([True, False], name='sell-macd-enabled'),
|
|
Categorical(['sell-angle', 'sell-macd_cross_signal', 'sell-sar_reversal'], name='trigger')
|
|
]
|