67 lines
2.4 KiB
Python
67 lines
2.4 KiB
Python
import logging
|
|
|
|
import numpy as np
|
|
|
|
from freqtrade.freqai.RL.Base4ActionRLEnv import Actions, Base4ActionRLEnv, Positions
|
|
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ReinforcementLearner_test_4ac(ReinforcementLearner):
|
|
"""
|
|
User created Reinforcement Learning Model prediction model.
|
|
"""
|
|
|
|
class MyRLEnv(Base4ActionRLEnv):
|
|
"""
|
|
User can override any function in BaseRLEnv and gym.Env. Here the user
|
|
sets a custom reward based on profit and trade duration.
|
|
"""
|
|
|
|
def calculate_reward(self, action):
|
|
|
|
# first, penalize if the action is not valid
|
|
if not self._is_valid(action):
|
|
return -2
|
|
|
|
pnl = self.get_unrealized_profit()
|
|
rew = np.sign(pnl) * (pnl + 1)
|
|
factor = 100
|
|
|
|
# reward agent for entering trades
|
|
if (action in (Actions.Long_enter.value, Actions.Short_enter.value)
|
|
and self._position == Positions.Neutral):
|
|
return 25
|
|
# discourage agent from not entering trades
|
|
if action == Actions.Neutral.value and self._position == Positions.Neutral:
|
|
return -1
|
|
|
|
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
|
|
trade_duration = self._current_tick - self._last_trade_tick
|
|
|
|
if trade_duration <= max_trade_duration:
|
|
factor *= 1.5
|
|
elif trade_duration > max_trade_duration:
|
|
factor *= 0.5
|
|
|
|
# discourage sitting in position
|
|
if (self._position in (Positions.Short, Positions.Long) and
|
|
action == Actions.Neutral.value):
|
|
return -1 * trade_duration / max_trade_duration
|
|
|
|
# close long
|
|
if action == Actions.Exit.value and self._position == Positions.Long:
|
|
if pnl > self.profit_aim * self.rr:
|
|
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
|
return float(rew * factor)
|
|
|
|
# close short
|
|
if action == Actions.Exit.value and self._position == Positions.Short:
|
|
if pnl > self.profit_aim * self.rr:
|
|
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
|
return float(rew * factor)
|
|
|
|
return 0.
|