140 lines
5.1 KiB
Python
140 lines
5.1 KiB
Python
import logging
|
|
from functools import reduce
|
|
|
|
import pandas as pd
|
|
import talib.abstract as ta
|
|
from pandas import DataFrame
|
|
|
|
from freqtrade.strategy import IStrategy, merge_informative_pair
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class freqai_rl_test_strat(IStrategy):
|
|
"""
|
|
Test strategy - used for testing freqAI functionalities.
|
|
DO not use in production.
|
|
"""
|
|
|
|
minimal_roi = {"0": 0.1, "240": -1}
|
|
|
|
plot_config = {
|
|
"main_plot": {},
|
|
"subplots": {
|
|
"prediction": {"prediction": {"color": "blue"}},
|
|
"target_roi": {
|
|
"target_roi": {"color": "brown"},
|
|
},
|
|
"do_predict": {
|
|
"do_predict": {"color": "brown"},
|
|
},
|
|
},
|
|
}
|
|
|
|
process_only_new_candles = True
|
|
stoploss = -0.05
|
|
use_exit_signal = True
|
|
startup_candle_count: int = 30
|
|
can_short = False
|
|
|
|
def informative_pairs(self):
|
|
whitelist_pairs = self.dp.current_whitelist()
|
|
corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"]
|
|
informative_pairs = []
|
|
for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]:
|
|
for pair in whitelist_pairs:
|
|
informative_pairs.append((pair, tf))
|
|
for pair in corr_pairs:
|
|
if pair in whitelist_pairs:
|
|
continue # avoid duplication
|
|
informative_pairs.append((pair, tf))
|
|
return informative_pairs
|
|
|
|
def populate_any_indicators(
|
|
self, pair, df, tf, informative=None, set_generalized_indicators=False
|
|
):
|
|
|
|
coin = pair.split('/')[0]
|
|
|
|
if informative is None:
|
|
informative = self.dp.get_pair_dataframe(pair, tf)
|
|
|
|
# first loop is automatically duplicating indicators for time periods
|
|
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
|
|
|
t = int(t)
|
|
informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
|
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
|
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t)
|
|
|
|
# FIXME: add these outside the user strategy?
|
|
# The following columns are necessary for RL models.
|
|
informative[f"%-{coin}raw_close"] = informative["close"]
|
|
informative[f"%-{coin}raw_open"] = informative["open"]
|
|
informative[f"%-{coin}raw_high"] = informative["high"]
|
|
informative[f"%-{coin}raw_low"] = informative["low"]
|
|
|
|
indicators = [col for col in informative if col.startswith("%")]
|
|
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
|
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
|
|
if n == 0:
|
|
continue
|
|
informative_shift = informative[indicators].shift(n)
|
|
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
|
|
informative = pd.concat((informative, informative_shift), axis=1)
|
|
|
|
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
|
|
skip_columns = [
|
|
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
|
|
]
|
|
df = df.drop(columns=skip_columns)
|
|
|
|
# Add generalized indicators here (because in live, it will call this
|
|
# function to populate indicators during training). Notice how we ensure not to
|
|
# add them multiple times
|
|
if set_generalized_indicators:
|
|
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
|
|
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
|
|
|
|
# For RL, there are no direct targets to set. This is filler (neutral)
|
|
# until the agent sends an action.
|
|
df["&-action"] = 0
|
|
|
|
return df
|
|
|
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
dataframe = self.freqai.start(dataframe, metadata, self)
|
|
|
|
return dataframe
|
|
|
|
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
enter_long_conditions = [df["do_predict"] == 1, df["&-action"] == 1]
|
|
|
|
if enter_long_conditions:
|
|
df.loc[
|
|
reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"]
|
|
] = (1, "long")
|
|
|
|
enter_short_conditions = [df["do_predict"] == 1, df["&-action"] == 3]
|
|
|
|
if enter_short_conditions:
|
|
df.loc[
|
|
reduce(lambda x, y: x & y, enter_short_conditions), ["enter_short", "enter_tag"]
|
|
] = (1, "short")
|
|
|
|
return df
|
|
|
|
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
|
exit_long_conditions = [df["do_predict"] == 1, df["&-action"] == 2]
|
|
if exit_long_conditions:
|
|
df.loc[reduce(lambda x, y: x & y, exit_long_conditions), "exit_long"] = 1
|
|
|
|
exit_short_conditions = [df["do_predict"] == 1, df["&-action"] == 4]
|
|
if exit_short_conditions:
|
|
df.loc[reduce(lambda x, y: x & y, exit_short_conditions), "exit_short"] = 1
|
|
|
|
return df
|