stable/scripts/plot_dataframe.py
2018-05-07 13:25:01 -07:00

433 lines
11 KiB
Python
Executable File

#!/usr/bin/env python3
"""
Script to display when the bot will buy a specific pair
Mandatory Cli parameters:
-p / --pair: pair to examine
Optional Cli parameters
-s / --strategy: strategy to use
-d / --datadir: path to pair backtest data
--timerange: specify what timerange of data to use.
-l / --live: Live, to download the latest ticker for the pair
"""
import datetime
import logging
import sys
from argparse import Namespace
from typing import List
import plotly.graph_objs as go
from plotly import tools
from plotly.offline import plot
import freqtrade.optimize as optimize
from freqtrade import exchange
from freqtrade.analyze import Analyze
from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration
logger = logging.getLogger(__name__)
def plot_dataframes_markers(data, fig, args):
"""
plots additional dataframe markers in the main plot
:param data:
:param fig:
:param args:
:return:
"""
if args.plotdataframemarker:
for x in args.plotdataframemarker:
filter = data[(data[x] == 100 ) | (data[x] == -100) ]
marker = go.Scatter(
x=filter.date,
y=filter.low * 0.99,
mode='markers',
name=x,
marker=dict(
symbol='diamond-tall-open',
size=10,
line=dict(width=1)
)
)
fig.append_trace(marker, 1, 1)
def plot_dataframes(data, fig, args):
"""
plots additional dataframes in the main plot
:param data:
:param fig:
:param args:
:return:
"""
if args.plotdataframe:
for x in args.plotdataframe:
chart = go.Scattergl(x=data['date'], y=data[x], name=x)
fig.append_trace(chart, 1, 1)
def plot_volume_dataframe(data, fig, args, plotnumber):
"""
adds the plotting of the volume
:param data:
:param fig:
:param args:
:return:
"""
volume = go.Bar(x=data['date'], y=data['volume'], name='Volume')
fig.append_trace(volume, plotnumber, 1)
def plot_macd_dataframe(data, fig, args, plotnumber):
"""
adds the plotting of the MACD if specified
:param data:
:param fig:
:param args:
:return:
"""
macd = go.Scattergl(x=data['date'], y=data[args.plotmacd], name='MACD')
macdsignal = go.Scattergl(x=data['date'], y=data[args.plotmacd + 'signal'], name='MACD signal')
fig.append_trace(macd, plotnumber, 1)
fig.append_trace(macdsignal, plotnumber, 1)
def plot_rsi_dataframe(data, fig, args, plotnumber):
"""
this function plots an additional RSI chart under the exiting charts
:param data:
:param fig:
:param args:
:return:
"""
if args.plotrsi:
for x in args.plotrsi:
rsi = go.Scattergl(x=data['date'], y=data[x], name=x)
fig.append_trace(rsi, plotnumber, 1)
def plot_cci_dataframe(data, fig, args, plotnumber):
"""
this function plots an additional cci chart under the exiting charts
:param data:
:param fig:
:param args:
:return:
"""
if args.plotcci:
for x in args.plotcci:
chart = go.Scattergl(x=data['date'], y=data[x], name=x)
fig.append_trace(chart, plotnumber, 1)
def plot_stop_loss_trade(df_sell, fig, analyze, args):
"""
plots the stop loss for the associated trades and buys
as well as the estimated profit ranges.
will be enabled if --stop-loss is provided
as argument
:param data:
:param trades:
:return:
"""
if args.stoplossdisplay is False:
return
if 'associated_buy_price' not in df_sell:
return
stoploss = analyze.strategy.stoploss
for index, x in df_sell.iterrows():
if x['associated_buy_price'] > 0:
# draw stop loss
fig['layout']['shapes'].append(
{
'fillcolor': 'red',
'opacity': 0.1,
'type': 'rect',
'x0': x['associated_buy_date'],
'x1': x['date'],
'y0': x['associated_buy_price'],
'y1': (x['associated_buy_price'] - abs(stoploss) * x['associated_buy_price']),
'line': {'color': 'red'}
}
)
totalTime = 0
for time in analyze.strategy.minimal_roi:
t = int(time)
totalTime = t + totalTime
enddate = x['date']
date = x['associated_buy_date'] + datetime.timedelta(minutes=totalTime)
# draw profit range
fig['layout']['shapes'].append(
{
'fillcolor': 'green',
'opacity': 0.1,
'type': 'rect',
'x0': date,
'x1': enddate,
'y0': x['associated_buy_price'],
'y1': x['associated_buy_price'] + x['associated_buy_price'] * analyze.strategy.minimal_roi[
time],
'line': {'color': 'green'}
}
)
def find_profits(data):
"""
finds the profits between sells and the associated buys. This does not take in account
ROI!
:param data:
:return:
"""
# go over all the sells
# find all previous buys
df_sell = data[data['sell'] == 1]
df_sell['profit'] = 0
df_buys = data[data['buy'] == 1]
lastDate = data['date'].iloc[0]
for index, row in df_sell.iterrows():
buys = df_buys[(df_buys['date'] < row['date']) & (df_buys['date'] > lastDate)]
profit = None
if buys['date'].count() > 0:
buys = buys.tail()
profit = round(row['close'] / buys['close'].values[0] * 100 - 100, 2)
lastDate = row['date']
df_sell.loc[index, 'associated_buy_date'] = buys['date'].values[0]
df_sell.loc[index, 'associated_buy_price'] = buys['close'].values[0]
df_sell.loc[index, 'profit'] = profit
return df_sell
def plot_analyzed_dataframe(args: Namespace) -> None:
"""
Calls analyze() and plots the returned dataframe
:return: None
"""
pair = args.pair.replace('-', '_')
timerange = Arguments.parse_timerange(args.timerange)
# Init strategy
try:
config = Configuration(args)
analyze = Analyze(config.get_config())
except AttributeError:
logger.critical(
'Impossible to load the strategy. Please check the file "user_data/strategies/%s.py"',
args.strategy
)
exit()
tick_interval = analyze.strategy.ticker_interval
tickers = {}
if args.live:
logger.info('Downloading pair.')
# Init Bittrex to use public API
exchange._API = exchange.Bittrex({'key': '', 'secret': ''})
tickers[pair] = exchange.get_ticker_history(pair, tick_interval)
else:
tickers = optimize.load_data(
datadir=args.datadir,
pairs=[pair],
ticker_interval=tick_interval,
refresh_pairs=False,
timerange=timerange
)
dataframes = analyze.tickerdata_to_dataframe(tickers)
dataframe = dataframes[pair]
dataframe = analyze.populate_buy_trend(dataframe)
dataframe = analyze.populate_sell_trend(dataframe)
if len(dataframe.index) > args.plotticks:
logger.warning('Ticker contained more than {} candles, clipping.'.format(args.plotticks))
data = dataframe.tail(args.plotticks)
candles = go.Candlestick(
x=data.date,
open=data.open,
high=data.high,
low=data.low,
close=data.close,
name='Price'
)
df_buy = data[data['buy'] == 1]
buys = go.Scattergl(
x=df_buy.date,
y=df_buy.close * 0.995,
mode='markers',
name='buy',
marker=dict(
symbol='triangle-up-dot',
size=15,
line=dict(width=1),
color='green',
)
)
df_sell = find_profits(data)
sells = go.Scatter(
x=df_sell.date,
y=df_sell.close * 1.01,
mode='markers+text',
name='sell',
text=df_sell.profit,
textposition='top right',
marker=dict(
symbol='triangle-down-dot',
size=15,
line=dict(width=1),
color='red',
)
)
bb_lower = go.Scatter(
x=data.date,
y=data.bb_lowerband,
name='BB lower',
line={'color': "transparent"},
)
bb_upper = go.Scatter(
x=data.date,
y=data.bb_upperband,
name='BB upper',
fill="tonexty",
fillcolor="rgba(0,176,246,0.2)",
line={'color': "transparent"},
)
bb_middle = go.Scatter(
x=data.date,
y=data.bb_middleband,
name='BB middle',
fill="tonexty",
fillcolor="rgba(0,176,246,0.2)",
line={'color': "red"},
)
# ugly hack for now
rowWidth = [1]
if args.plotvolume:
rowWidth.append(1)
if args.plotmacd:
rowWidth.append(1)
if args.plotrsi:
rowWidth.append(1)
if args.plotcci:
rowWidth.append(1)
# standard layout signal + volume
fig = tools.make_subplots(
rows=len(rowWidth),
cols=1,
shared_xaxes=True,
row_width=rowWidth,
vertical_spacing=0.0001,
)
# todo should be optional
fig.append_trace(candles, 1, 1)
fig.append_trace(bb_lower, 1, 1)
fig.append_trace(bb_middle, 1, 1)
fig.append_trace(bb_upper, 1, 1)
fig.append_trace(buys, 1, 1)
fig.append_trace(sells, 1, 1)
# append stop loss/profit
plot_stop_loss_trade(df_sell, fig, analyze, args)
# plot other dataframes
plot_dataframes(data, fig, args)
plot_dataframes_markers(data, fig, args)
fig['layout'].update(title=args.pair)
fig['layout']['yaxis1'].update(title='Price')
subplots = 1
if args.plotvolume:
subplots = subplots + 1
plot_volume_dataframe(data, fig, args, subplots)
fig['layout']['yaxis' + str(subplots)].update(title='Volume')
if args.plotmacd:
subplots = subplots + 1
plot_macd_dataframe(data, fig, args, subplots)
fig['layout']['yaxis' + str(subplots)].update(title='MACD')
if args.plotrsi:
subplots = subplots + 1
plot_rsi_dataframe(data, fig, args, subplots)
fig['layout']['yaxis' + str(subplots)].update(title='RSI', range=[0, 100])
if args.plotcci:
subplots = subplots + 1
plot_cci_dataframe(data, fig, args, subplots)
fig['layout']['yaxis' + str(subplots)].update(title='CCI')
# updated all the
plot(fig, filename='freqtrade-plot.html')
def plot_parse_args(args: List[str]) -> Namespace:
"""
Parse args passed to the script
:param args: Cli arguments
:return: args: Array with all arguments
"""
arguments = Arguments(args, 'Graph dataframe')
arguments.scripts_options()
arguments.common_args_parser()
arguments.optimizer_shared_options(arguments.parser)
arguments.backtesting_options(arguments.parser)
return arguments.parse_args()
def main(sysargv: List[str]) -> None:
"""
This function will initiate the bot and start the trading loop.
:return: None
"""
logger.info('Starting Plot Dataframe')
plot_analyzed_dataframe(
plot_parse_args(sysargv)
)
if __name__ == '__main__':
main(sys.argv[1:])