stable/freqtrade/plot/plotting.py
2019-07-09 00:59:34 +03:00

324 lines
9.8 KiB
Python

import logging
from pathlib import Path
from typing import Dict, List, Optional
import pandas as pd
from freqtrade.arguments import Arguments
from freqtrade.data import history
from freqtrade.data.btanalysis import (combine_tickers_with_mean,
create_cum_profit, load_trades)
from freqtrade.exchange import Exchange
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
logger = logging.getLogger(__name__)
try:
from plotly import tools
from plotly.offline import plot
import plotly.graph_objs as go
except ImportError:
logger.exception("Module plotly not found \n Please install using `pip install plotly`")
exit(1)
def init_plotscript(config):
"""
Initialize objects needed for plotting
:return: Dict with tickers, trades, pairs and strategy
"""
exchange: Optional[Exchange] = None
# Exchange is only needed when downloading data!
if config.get("live", False) or config.get("refresh_pairs", False):
exchange = ExchangeResolver(config.get('exchange', {}).get('name'),
config).exchange
strategy = StrategyResolver(config).strategy
if "pairs" in config:
pairs = config["pairs"].split(',')
else:
pairs = config["exchange"]["pair_whitelist"]
# Set timerange to use
timerange = Arguments.parse_timerange(config.get("timerange"))
tickers = history.load_data(
datadir=Path(str(config.get("datadir"))),
pairs=pairs,
ticker_interval=config['ticker_interval'],
refresh_pairs=config.get('refresh_pairs', False),
timerange=timerange,
exchange=exchange,
live=config.get("live", False),
)
trades = load_trades(config)
return {"tickers": tickers,
"trades": trades,
"pairs": pairs,
"strategy": strategy,
}
def add_indicators(fig, row, indicators: List[str], data: pd.DataFrame) -> tools.make_subplots:
"""
Generator all the indicator selected by the user for a specific row
:param fig: Plot figure to append to
:param row: row number for this plot
:param indicators: List of indicators present in the dataframe
:param data: candlestick DataFrame
"""
for indicator in indicators:
if indicator in data:
# TODO: Figure out why scattergl causes problems
scattergl = go.Scatter(
x=data['date'],
y=data[indicator].values,
mode='lines',
name=indicator
)
fig.append_trace(scattergl, row, 1)
else:
logger.info(
'Indicator "%s" ignored. Reason: This indicator is not found '
'in your strategy.',
indicator
)
return fig
def add_profit(fig, row, data: pd.DataFrame, column: str, name: str) -> tools.make_subplots:
"""
Add profit-plot
:param fig: Plot figure to append to
:param row: row number for this plot
:param data: candlestick DataFrame
:param column: Column to use for plot
:param name: Name to use
:return: fig with added profit plot
"""
profit = go.Scattergl(
x=data.index,
y=data[column],
name=name,
)
fig.append_trace(profit, row, 1)
return fig
def plot_trades(fig, trades: pd.DataFrame) -> tools.make_subplots:
"""
Add trades to "fig"
"""
# Trades can be empty
if trades is not None and len(trades) > 0:
trade_buys = go.Scatter(
x=trades["open_time"],
y=trades["open_rate"],
mode='markers',
name='trade_buy',
marker=dict(
symbol='square-open',
size=11,
line=dict(width=2),
color='green'
)
)
# Create description for sell summarizing the trade
desc = trades.apply(lambda row: f"{round(row['profitperc'], 3)}%, {row['sell_reason']}, "
f"{row['duration']}min",
axis=1)
trade_sells = go.Scatter(
x=trades["close_time"],
y=trades["close_rate"],
text=desc,
mode='markers',
name='trade_sell',
marker=dict(
symbol='square-open',
size=11,
line=dict(width=2),
color='red'
)
)
fig.append_trace(trade_buys, 1, 1)
fig.append_trace(trade_sells, 1, 1)
else:
logger.warning("No trades found.")
return fig
def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFrame = None,
indicators1: List[str] = [],
indicators2: List[str] = [],) -> go.Figure:
"""
Generate the graph from the data generated by Backtesting or from DB
Volume will always be ploted in row2, so Row 1 and 3 are to our disposal for custom indicators
:param pair: Pair to Display on the graph
:param data: OHLCV DataFrame containing indicators and buy/sell signals
:param trades: All trades created
:param indicators1: List containing Main plot indicators
:param indicators2: List containing Sub plot indicators
:return: None
"""
# Define the graph
fig = tools.make_subplots(
rows=3,
cols=1,
shared_xaxes=True,
row_width=[1, 1, 4],
vertical_spacing=0.0001,
)
fig['layout'].update(title=pair)
fig['layout']['yaxis1'].update(title='Price')
fig['layout']['yaxis2'].update(title='Volume')
fig['layout']['yaxis3'].update(title='Other')
fig['layout']['xaxis']['rangeslider'].update(visible=False)
# Common information
candles = go.Candlestick(
x=data.date,
open=data.open,
high=data.high,
low=data.low,
close=data.close,
name='Price'
)
fig.append_trace(candles, 1, 1)
if 'buy' in data.columns:
df_buy = data[data['buy'] == 1]
if len(df_buy) > 0:
buys = go.Scatter(
x=df_buy.date,
y=df_buy.close,
mode='markers',
name='buy',
marker=dict(
symbol='triangle-up-dot',
size=9,
line=dict(width=1),
color='green',
)
)
fig.append_trace(buys, 1, 1)
else:
logger.warning("No buy-signals found.")
if 'sell' in data.columns:
df_sell = data[data['sell'] == 1]
if len(df_sell) > 0:
sells = go.Scatter(
x=df_sell.date,
y=df_sell.close,
mode='markers',
name='sell',
marker=dict(
symbol='triangle-down-dot',
size=9,
line=dict(width=1),
color='red',
)
)
fig.append_trace(sells, 1, 1)
else:
logger.warning("No sell-signals found.")
if 'bb_lowerband' in data and 'bb_upperband' in data:
bb_lower = go.Scattergl(
x=data.date,
y=data.bb_lowerband,
name='BB lower',
line={'color': 'rgba(255,255,255,0)'},
)
bb_upper = go.Scattergl(
x=data.date,
y=data.bb_upperband,
name='BB upper',
fill="tonexty",
fillcolor="rgba(0,176,246,0.2)",
line={'color': 'rgba(255,255,255,0)'},
)
fig.append_trace(bb_lower, 1, 1)
fig.append_trace(bb_upper, 1, 1)
# Add indicators to main plot
fig = add_indicators(fig=fig, row=1, indicators=indicators1, data=data)
fig = plot_trades(fig, trades)
# Volume goes to row 2
volume = go.Bar(
x=data['date'],
y=data['volume'],
name='Volume'
)
fig.append_trace(volume, 2, 1)
# Add indicators to seperate row
fig = add_indicators(fig=fig, row=3, indicators=indicators2, data=data)
return fig
def generate_profit_graph(pairs: str, tickers: Dict[str, pd.DataFrame],
trades: pd.DataFrame) -> go.Figure:
# Combine close-values for all pairs, rename columns to "pair"
df_comb = combine_tickers_with_mean(tickers, "close")
# Add combined cumulative profit
df_comb = create_cum_profit(df_comb, trades, 'cum_profit')
# Plot the pairs average close prices, and total profit growth
avgclose = go.Scattergl(
x=df_comb.index,
y=df_comb['mean'],
name='Avg close price',
)
fig = tools.make_subplots(rows=3, cols=1, shared_xaxes=True, row_width=[1, 1, 1])
fig['layout'].update(title="Profit plot")
fig.append_trace(avgclose, 1, 1)
fig = add_profit(fig, 2, df_comb, 'cum_profit', 'Profit')
for pair in pairs:
profit_col = f'cum_profit_{pair}'
df_comb = create_cum_profit(df_comb, trades[trades['pair'] == pair], profit_col)
fig = add_profit(fig, 3, df_comb, profit_col, f"Profit {pair}")
return fig
def generate_plot_filename(pair, ticker_interval) -> str:
"""
Generate filenames per pair/ticker_interval to be used for storing plots
"""
pair_name = pair.replace("/", "_")
file_name = 'freqtrade-plot-' + pair_name + '-' + ticker_interval + '.html'
logger.info('Generate plot file for %s', pair)
return file_name
def store_plot_file(fig, filename: str, auto_open: bool = False) -> None:
"""
Generate a plot html file from pre populated fig plotly object
:param fig: Plotly Figure to plot
:param pair: Pair to plot (used as filename and Plot title)
:param ticker_interval: Used as part of the filename
:return: None
"""
Path("user_data/plots").mkdir(parents=True, exist_ok=True)
plot(fig, filename=str(Path('user_data/plots').joinpath(filename)),
auto_open=auto_open)