287 lines
9.9 KiB
Python
287 lines
9.9 KiB
Python
import logging
|
|
from typing import Any, Dict # Optional
|
|
from enum import Enum
|
|
import numpy as np
|
|
import torch as th
|
|
from stable_baselines3.common.callbacks import EvalCallback
|
|
from stable_baselines3.common.monitor import Monitor
|
|
# from stable_baselines3.common.vec_env import SubprocVecEnv
|
|
from freqtrade.freqai.RL.BaseRLEnv import BaseRLEnv
|
|
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
|
from freqtrade.freqai.RL.TDQNagent import TDQN
|
|
from stable_baselines3.common.buffers import ReplayBuffer
|
|
from gym import spaces
|
|
from gym.utils import seeding
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ReinforcementLearningTDQN(BaseReinforcementLearningModel):
|
|
"""
|
|
User created Reinforcement Learning Model prediction model.
|
|
"""
|
|
|
|
def fit(self, data_dictionary: Dict[str, Any], pair: str = ''):
|
|
|
|
agent_params = self.freqai_info['model_training_parameters']
|
|
reward_params = self.freqai_info['model_reward_parameters']
|
|
train_df = data_dictionary["train_features"]
|
|
test_df = data_dictionary["test_features"]
|
|
eval_freq = agent_params["eval_cycles"] * len(test_df)
|
|
total_timesteps = agent_params["train_cycles"] * len(train_df)
|
|
|
|
# price data for model training and evaluation
|
|
price = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(len(train_df.index))
|
|
price_test = self.dd.historic_data[pair][f"{self.config['timeframe']}"].tail(
|
|
len(test_df.index))
|
|
|
|
# environments
|
|
train_env = MyRLEnv(df=train_df, prices=price, window_size=self.CONV_WIDTH,
|
|
reward_kwargs=reward_params)
|
|
eval = MyRLEnv(df=test_df, prices=price_test,
|
|
window_size=self.CONV_WIDTH, reward_kwargs=reward_params)
|
|
eval_env = Monitor(eval, ".")
|
|
eval_env.reset()
|
|
|
|
path = self.dk.data_path
|
|
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
|
log_path=f"{path}/tdqn/logs/", eval_freq=int(eval_freq),
|
|
deterministic=True, render=False)
|
|
|
|
# model arch
|
|
policy_kwargs = dict(activation_fn=th.nn.ReLU,
|
|
net_arch=[256, 256, 128])
|
|
|
|
model = TDQN('TMultiInputPolicy', train_env,
|
|
policy_kwargs=policy_kwargs,
|
|
tensorboard_log=f"{path}/tdqn/tensorboard/",
|
|
learning_rate=0.00025, gamma=0.9,
|
|
target_update_interval=5000, buffer_size=50000,
|
|
exploration_initial_eps=1, exploration_final_eps=0.1,
|
|
replay_buffer_class=ReplayBuffer
|
|
)
|
|
|
|
model.learn(
|
|
total_timesteps=int(total_timesteps),
|
|
callback=eval_callback
|
|
)
|
|
|
|
print('Training finished!')
|
|
|
|
return model
|
|
|
|
|
|
class Actions(Enum):
|
|
Short = 0
|
|
Long = 1
|
|
Neutral = 2
|
|
|
|
|
|
class Positions(Enum):
|
|
Short = 0
|
|
Long = 1
|
|
Neutral = 0.5
|
|
|
|
def opposite(self):
|
|
return Positions.Short if self == Positions.Long else Positions.Long
|
|
|
|
|
|
class MyRLEnv(BaseRLEnv):
|
|
"""
|
|
User can override any function in BaseRLEnv and gym.Env. Here the user
|
|
Adds 5 actions.
|
|
"""
|
|
|
|
metadata = {'render.modes': ['human']}
|
|
|
|
def __init__(self, df, prices, reward_kwargs, window_size=10, starting_point=True, ):
|
|
assert df.ndim == 2
|
|
|
|
self.seed()
|
|
self.df = df
|
|
self.signal_features = self.df
|
|
self.prices = prices
|
|
self.window_size = window_size
|
|
self.starting_point = starting_point
|
|
self.rr = reward_kwargs["rr"]
|
|
self.profit_aim = reward_kwargs["profit_aim"]
|
|
|
|
self.fee = 0.0015
|
|
|
|
# # spaces
|
|
self.shape = (window_size, self.signal_features.shape[1])
|
|
self.action_space = spaces.Discrete(len(Actions))
|
|
self.observation_space = spaces.Box(
|
|
low=-np.inf, high=np.inf, shape=self.shape, dtype=np.float32)
|
|
|
|
# episode
|
|
self._start_tick = self.window_size
|
|
self._end_tick = len(self.prices) - 1
|
|
self._done = None
|
|
self._current_tick = None
|
|
self._last_trade_tick = None
|
|
self._position = Positions.Neutral
|
|
self._position_history = None
|
|
self.total_reward = None
|
|
self._total_profit = None
|
|
self._first_rendering = None
|
|
self.history = None
|
|
self.trade_history = []
|
|
|
|
# self.A_t, self.B_t = 0.000639, 0.00001954
|
|
self.r_t_change = 0.
|
|
|
|
self.returns_report = []
|
|
|
|
def seed(self, seed=None):
|
|
self.np_random, seed = seeding.np_random(seed)
|
|
return [seed]
|
|
|
|
def reset(self):
|
|
|
|
self._done = False
|
|
|
|
if self.starting_point is True:
|
|
self._position_history = (self._start_tick * [None]) + [self._position]
|
|
else:
|
|
self._position_history = (self.window_size * [None]) + [self._position]
|
|
|
|
self._current_tick = self._start_tick
|
|
self._last_trade_tick = None
|
|
self._position = Positions.Neutral
|
|
|
|
self.total_reward = 0.
|
|
self._total_profit = 1. # unit
|
|
self._first_rendering = True
|
|
self.history = {}
|
|
self.trade_history = []
|
|
self.portfolio_log_returns = np.zeros(len(self.prices))
|
|
|
|
self._profits = [(self._start_tick, 1)]
|
|
self.close_trade_profit = []
|
|
self.r_t_change = 0.
|
|
|
|
self.returns_report = []
|
|
|
|
return self._get_observation()
|
|
|
|
def step(self, action):
|
|
self._done = False
|
|
self._current_tick += 1
|
|
|
|
if self._current_tick == self._end_tick:
|
|
self._done = True
|
|
|
|
self.update_portfolio_log_returns(action)
|
|
|
|
self._update_profit(action)
|
|
step_reward = self.calculate_reward(action)
|
|
self.total_reward += step_reward
|
|
|
|
trade_type = None
|
|
if self.is_tradesignal(action): # exclude 3 case not trade
|
|
# Update position
|
|
"""
|
|
Action: Neutral, position: Long -> Close Long
|
|
Action: Neutral, position: Short -> Close Short
|
|
|
|
Action: Long, position: Neutral -> Open Long
|
|
Action: Long, position: Short -> Close Short and Open Long
|
|
|
|
Action: Short, position: Neutral -> Open Short
|
|
Action: Short, position: Long -> Close Long and Open Short
|
|
"""
|
|
|
|
temp_position = self._position
|
|
if action == Actions.Neutral.value:
|
|
self._position = Positions.Neutral
|
|
trade_type = "neutral"
|
|
elif action == Actions.Long.value:
|
|
self._position = Positions.Long
|
|
trade_type = "long"
|
|
elif action == Actions.Short.value:
|
|
self._position = Positions.Short
|
|
trade_type = "short"
|
|
else:
|
|
print("case not define")
|
|
|
|
# Update last trade tick
|
|
self._last_trade_tick = self._current_tick
|
|
|
|
if trade_type is not None:
|
|
self.trade_history.append(
|
|
{'price': self.current_price(), 'index': self._current_tick,
|
|
'type': trade_type})
|
|
|
|
if self._total_profit < 0.2:
|
|
self._done = True
|
|
|
|
self._position_history.append(self._position)
|
|
observation = self._get_observation()
|
|
info = dict(
|
|
tick=self._current_tick,
|
|
total_reward=self.total_reward,
|
|
total_profit=self._total_profit,
|
|
position=self._position.value
|
|
)
|
|
self._update_history(info)
|
|
|
|
return observation, step_reward, self._done, info
|
|
|
|
def _get_observation(self):
|
|
return self.signal_features[(self._current_tick - self.window_size):self._current_tick]
|
|
|
|
def get_unrealized_profit(self):
|
|
|
|
if self._last_trade_tick is None:
|
|
return 0.
|
|
|
|
if self._position == Positions.Neutral:
|
|
return 0.
|
|
elif self._position == Positions.Short:
|
|
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
|
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
return (last_trade_price - current_price) / last_trade_price
|
|
elif self._position == Positions.Long:
|
|
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
|
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
return (current_price - last_trade_price) / last_trade_price
|
|
else:
|
|
return 0.
|
|
|
|
def is_tradesignal(self, action):
|
|
# trade signal
|
|
"""
|
|
not trade signal is :
|
|
Action: Neutral, position: Neutral -> Nothing
|
|
Action: Long, position: Long -> Hold Long
|
|
Action: Short, position: Short -> Hold Short
|
|
"""
|
|
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral)
|
|
or (action == Actions.Short.value and self._position == Positions.Short)
|
|
or (action == Actions.Long.value and self._position == Positions.Long))
|
|
|
|
def _is_trade(self, action: Actions):
|
|
return ((action == Actions.Long.value and self._position == Positions.Short) or
|
|
(action == Actions.Short.value and self._position == Positions.Long) or
|
|
(action == Actions.Neutral.value and self._position == Positions.Long) or
|
|
(action == Actions.Neutral.value and self._position == Positions.Short)
|
|
)
|
|
|
|
def is_hold(self, action):
|
|
return ((action == Actions.Short.value and self._position == Positions.Short)
|
|
or (action == Actions.Long.value and self._position == Positions.Long))
|
|
|
|
def add_buy_fee(self, price):
|
|
return price * (1 + self.fee)
|
|
|
|
def add_sell_fee(self, price):
|
|
return price / (1 + self.fee)
|
|
|
|
def _update_history(self, info):
|
|
if not self.history:
|
|
self.history = {key: [] for key in info.keys()}
|
|
|
|
for key, value in info.items():
|
|
self.history[key].append(value)
|