stable/freqtrade/data/converter.py
2020-07-24 17:37:07 +02:00

263 lines
11 KiB
Python

"""
Functions to convert data from one format to another
"""
import itertools
import logging
from datetime import datetime, timezone
from operator import itemgetter
from typing import Any, Dict, List
import pandas as pd
from pandas import DataFrame, to_datetime
from freqtrade.constants import (DEFAULT_DATAFRAME_COLUMNS,
DEFAULT_TRADES_COLUMNS)
logger = logging.getLogger(__name__)
def ohlcv_to_dataframe(ohlcv: list, timeframe: str, pair: str, *,
fill_missing: bool = True, drop_incomplete: bool = True) -> DataFrame:
"""
Converts a list with candle (OHLCV) data (in format returned by ccxt.fetch_ohlcv)
to a Dataframe
:param ohlcv: list with candle (OHLCV) data, as returned by exchange.async_get_candle_history
:param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
:param pair: Pair this data is for (used to warn if fillup was necessary)
:param fill_missing: fill up missing candles with 0 candles
(see ohlcv_fill_up_missing_data for details)
:param drop_incomplete: Drop the last candle of the dataframe, assuming it's incomplete
:return: DataFrame
"""
logger.debug(f"Converting candle (OHLCV) data to dataframe for pair {pair}.")
cols = DEFAULT_DATAFRAME_COLUMNS
df = DataFrame(ohlcv, columns=cols)
df['date'] = to_datetime(df['date'], unit='ms', utc=True, infer_datetime_format=True)
# Some exchanges return int values for Volume and even for OHLC.
# Convert them since TA-LIB indicators used in the strategy assume floats
# and fail with exception...
df = df.astype(dtype={'open': 'float', 'high': 'float', 'low': 'float', 'close': 'float',
'volume': 'float'})
return clean_ohlcv_dataframe(df, timeframe, pair,
fill_missing=fill_missing,
drop_incomplete=drop_incomplete)
def clean_ohlcv_dataframe(data: DataFrame, timeframe: str, pair: str, *,
fill_missing: bool = True,
drop_incomplete: bool = True) -> DataFrame:
"""
Clense a OHLCV dataframe by
* Grouping it by date (removes duplicate tics)
* dropping last candles if requested
* Filling up missing data (if requested)
:param data: DataFrame containing candle (OHLCV) data.
:param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
:param pair: Pair this data is for (used to warn if fillup was necessary)
:param fill_missing: fill up missing candles with 0 candles
(see ohlcv_fill_up_missing_data for details)
:param drop_incomplete: Drop the last candle of the dataframe, assuming it's incomplete
:return: DataFrame
"""
# group by index and aggregate results to eliminate duplicate ticks
data = data.groupby(by='date', as_index=False, sort=True).agg({
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'max',
})
# eliminate partial candle
if drop_incomplete:
data.drop(data.tail(1).index, inplace=True)
logger.debug('Dropping last candle')
if fill_missing:
return ohlcv_fill_up_missing_data(data, timeframe, pair)
else:
return data
def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str) -> DataFrame:
"""
Fills up missing data with 0 volume rows,
using the previous close as price for "open", "high" "low" and "close", volume is set to 0
"""
from freqtrade.exchange import timeframe_to_minutes
ohlcv_dict = {
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'sum'
}
timeframe_minutes = timeframe_to_minutes(timeframe)
# Resample to create "NAN" values
df = dataframe.resample(f'{timeframe_minutes}min', on='date').agg(ohlcv_dict)
# Forwardfill close for missing columns
df['close'] = df['close'].fillna(method='ffill')
# Use close for "open, high, low"
df.loc[:, ['open', 'high', 'low']] = df[['open', 'high', 'low']].fillna(
value={'open': df['close'],
'high': df['close'],
'low': df['close'],
})
df.reset_index(inplace=True)
len_before = len(dataframe)
len_after = len(df)
if len_before != len_after:
logger.info(f"Missing data fillup for {pair}: before: {len_before} - after: {len_after}")
return df
def trim_dataframe(df: DataFrame, timerange, df_date_col: str = 'date') -> DataFrame:
"""
Trim dataframe based on given timerange
:param df: Dataframe to trim
:param timerange: timerange (use start and end date if available)
:param: df_date_col: Column in the dataframe to use as Date column
:return: trimmed dataframe
"""
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
df = df.loc[df[df_date_col] >= start, :]
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
df = df.loc[df[df_date_col] <= stop, :]
return df
def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
"""
TODO: This should get a dedicated test
Gets order book list, returns dataframe with below format per suggested by creslin
-------------------------------------------------------------------
b_sum b_size bids asks a_size a_sum
-------------------------------------------------------------------
"""
cols = ['bids', 'b_size']
bids_frame = DataFrame(bids, columns=cols)
# add cumulative sum column
bids_frame['b_sum'] = bids_frame['b_size'].cumsum()
cols2 = ['asks', 'a_size']
asks_frame = DataFrame(asks, columns=cols2)
# add cumulative sum column
asks_frame['a_sum'] = asks_frame['a_size'].cumsum()
frame = pd.concat([bids_frame['b_sum'], bids_frame['b_size'], bids_frame['bids'],
asks_frame['asks'], asks_frame['a_size'], asks_frame['a_sum']], axis=1,
keys=['b_sum', 'b_size', 'bids', 'asks', 'a_size', 'a_sum'])
# logger.info('order book %s', frame )
return frame
def trades_remove_duplicates(trades: List[List]) -> List[List]:
"""
Removes duplicates from the trades list.
Uses itertools.groupby to avoid converting to pandas.
Tests show it as being pretty efficient on lists of 4M Lists.
:param trades: List of Lists with constants.DEFAULT_TRADES_COLUMNS as columns
:return: same format as above, but with duplicates removed
"""
return [i for i, _ in itertools.groupby(sorted(trades, key=itemgetter(0)))]
def trades_dict_to_list(trades: List[Dict]) -> List[List]:
"""
Convert fetch_trades result into a List (to be more memory efficient).
:param trades: List of trades, as returned by ccxt.fetch_trades.
:return: List of Lists, with constants.DEFAULT_TRADES_COLUMNS as columns
"""
return [[t[col] for col in DEFAULT_TRADES_COLUMNS] for t in trades]
def trades_to_ohlcv(trades: List, timeframe: str) -> DataFrame:
"""
Converts trades list to OHLCV list
TODO: This should get a dedicated test
:param trades: List of trades, as returned by ccxt.fetch_trades.
:param timeframe: Timeframe to resample data to
:return: OHLCV Dataframe.
"""
from freqtrade.exchange import timeframe_to_minutes
timeframe_minutes = timeframe_to_minutes(timeframe)
df = pd.DataFrame(trades, columns=DEFAULT_TRADES_COLUMNS)
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms',
utc=True,)
df = df.set_index('timestamp')
df_new = df['price'].resample(f'{timeframe_minutes}min').ohlc()
df_new['volume'] = df['amount'].resample(f'{timeframe_minutes}min').sum()
df_new['date'] = df_new.index
# Drop 0 volume rows
df_new = df_new.dropna()
return df_new.loc[:, DEFAULT_DATAFRAME_COLUMNS]
def convert_trades_format(config: Dict[str, Any], convert_from: str, convert_to: str, erase: bool):
"""
Convert trades from one format to another format.
:param config: Config dictionary
:param convert_from: Source format
:param convert_to: Target format
:param erase: Erase souce data (does not apply if source and target format are identical)
"""
from freqtrade.data.history.idatahandler import get_datahandler
src = get_datahandler(config['datadir'], convert_from)
trg = get_datahandler(config['datadir'], convert_to)
if 'pairs' not in config:
config['pairs'] = src.trades_get_pairs(config['datadir'])
logger.info(f"Converting trades for {config['pairs']}")
for pair in config['pairs']:
data = src.trades_load(pair=pair)
logger.info(f"Converting {len(data)} trades for {pair}")
trg.trades_store(pair, data)
if erase and convert_from != convert_to:
logger.info(f"Deleting source Trade data for {pair}.")
src.trades_purge(pair=pair)
def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to: str, erase: bool):
"""
Convert OHLCV from one format to another
:param config: Config dictionary
:param convert_from: Source format
:param convert_to: Target format
:param erase: Erase souce data (does not apply if source and target format are identical)
"""
from freqtrade.data.history.idatahandler import get_datahandler
src = get_datahandler(config['datadir'], convert_from)
trg = get_datahandler(config['datadir'], convert_to)
timeframes = config.get('timeframes', [config.get('timeframe')])
logger.info(f"Converting candle (OHLCV) for timeframe {timeframes}")
if 'pairs' not in config:
config['pairs'] = []
# Check timeframes or fall back to timeframe.
for timeframe in timeframes:
config['pairs'].extend(src.ohlcv_get_pairs(config['datadir'],
timeframe))
logger.info(f"Converting candle (OHLCV) data for {config['pairs']}")
for timeframe in timeframes:
for pair in config['pairs']:
data = src.ohlcv_load(pair=pair, timeframe=timeframe,
timerange=None,
fill_missing=False,
drop_incomplete=False,
startup_candles=0)
logger.info(f"Converting {len(data)} candles for {pair}")
if len(data) > 0:
trg.ohlcv_store(pair=pair, timeframe=timeframe, data=data)
if erase and convert_from != convert_to:
logger.info(f"Deleting source data for {pair} / {timeframe}")
src.ohlcv_purge(pair=pair, timeframe=timeframe)