333 lines
12 KiB
Python
333 lines
12 KiB
Python
import logging
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import talib.abstract as ta
|
|
from pandas import DataFrame
|
|
|
|
from freqtrade.strategy import IntParameter, IStrategy, merge_informative_pair
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class FreqaiExampleHybridStrategy(IStrategy):
|
|
"""
|
|
Example of a hybrid FreqAI strat, designed to illustrate how a user may employ
|
|
FreqAI to bolster a typical Freqtrade strategy.
|
|
|
|
Launching this strategy would be:
|
|
|
|
freqtrade trade --strategy FreqaiExampleHyridStrategy --strategy-path freqtrade/templates
|
|
--freqaimodel CatboostClassifier --config config_examples/config_freqai.example.json
|
|
|
|
or the user simply adds this to their config:
|
|
|
|
"freqai": {
|
|
"enabled": true,
|
|
"purge_old_models": true,
|
|
"train_period_days": 15,
|
|
"identifier": "uniqe-id",
|
|
"feature_parameters": {
|
|
"include_timeframes": [
|
|
"3m",
|
|
"15m",
|
|
"1h"
|
|
],
|
|
"include_corr_pairlist": [
|
|
"BTC/USDT",
|
|
"ETH/USDT"
|
|
],
|
|
"label_period_candles": 20,
|
|
"include_shifted_candles": 2,
|
|
"DI_threshold": 0.9,
|
|
"weight_factor": 0.9,
|
|
"principal_component_analysis": false,
|
|
"use_SVM_to_remove_outliers": true,
|
|
"indicator_max_period_candles": 20,
|
|
"indicator_periods_candles": [10, 20]
|
|
},
|
|
"data_split_parameters": {
|
|
"test_size": 0.33,
|
|
"random_state": 1
|
|
},
|
|
"model_training_parameters": {
|
|
"n_estimators": 800
|
|
}
|
|
},
|
|
|
|
Thanks to @smarm and @jooopieeert for developing and sharing the strategy.
|
|
"""
|
|
|
|
minimal_roi = {"0": 0.1, "30": 0.75, "60": 0.05, "120": 0.025, "240": -1}
|
|
|
|
process_only_new_candles = True
|
|
stoploss = -0.1
|
|
use_exit_signal = True
|
|
startup_candle_count: int = 300
|
|
can_short = True
|
|
|
|
buy_params = {
|
|
"buy_m1": 4,
|
|
"buy_m2": 7,
|
|
"buy_m3": 1,
|
|
"buy_p1": 8,
|
|
"buy_p2": 9,
|
|
"buy_p3": 8,
|
|
}
|
|
|
|
# Sell hyperspace params:
|
|
sell_params = {
|
|
"sell_m1": 1,
|
|
"sell_m2": 3,
|
|
"sell_m3": 6,
|
|
"sell_p1": 16,
|
|
"sell_p2": 18,
|
|
"sell_p3": 18,
|
|
}
|
|
|
|
buy_m1 = IntParameter(1, 7, default=1)
|
|
buy_m2 = IntParameter(1, 7, default=3)
|
|
buy_m3 = IntParameter(1, 7, default=4)
|
|
buy_p1 = IntParameter(7, 21, default=14)
|
|
buy_p2 = IntParameter(7, 21, default=10)
|
|
buy_p3 = IntParameter(7, 21, default=10)
|
|
|
|
sell_m1 = IntParameter(1, 7, default=1)
|
|
sell_m2 = IntParameter(1, 7, default=3)
|
|
sell_m3 = IntParameter(1, 7, default=4)
|
|
sell_p1 = IntParameter(7, 21, default=14)
|
|
sell_p2 = IntParameter(7, 21, default=10)
|
|
sell_p3 = IntParameter(7, 21, default=10)
|
|
|
|
# FreqAI required function, leave as is or add additional informatives to existing structure.
|
|
def informative_pairs(self):
|
|
whitelist_pairs = self.dp.current_whitelist()
|
|
corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"]
|
|
informative_pairs = []
|
|
for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]:
|
|
for pair in whitelist_pairs:
|
|
informative_pairs.append((pair, tf))
|
|
for pair in corr_pairs:
|
|
if pair in whitelist_pairs:
|
|
continue # avoid duplication
|
|
informative_pairs.append((pair, tf))
|
|
return informative_pairs
|
|
|
|
# FreqAI required function, user can add or remove indicators, but general structure
|
|
# must stay the same.
|
|
def populate_any_indicators(
|
|
self, pair, df, tf, informative=None, set_generalized_indicators=False
|
|
):
|
|
"""
|
|
User feeds these indicators to FreqAI to train a classifier to decide
|
|
if the market will go up or down.
|
|
|
|
:param pair: pair to be used as informative
|
|
:param df: strategy dataframe which will receive merges from informatives
|
|
:param tf: timeframe of the dataframe which will modify the feature names
|
|
:param informative: the dataframe associated with the informative pair
|
|
"""
|
|
|
|
coin = pair.split('/')[0]
|
|
|
|
if informative is None:
|
|
informative = self.dp.get_pair_dataframe(pair, tf)
|
|
|
|
# first loop is automatically duplicating indicators for time periods
|
|
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
|
|
|
t = int(t)
|
|
informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
|
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
|
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t)
|
|
informative[f"%-{coin}sma-period_{t}"] = ta.SMA(informative, timeperiod=t)
|
|
informative[f"%-{coin}ema-period_{t}"] = ta.EMA(informative, timeperiod=t)
|
|
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
|
informative[f"%-{coin}roc-period_{t}"] = ta.ROC(informative, timeperiod=t)
|
|
informative[f"%-{coin}relative_volume-period_{t}"] = (
|
|
informative["volume"] / informative["volume"].rolling(t).mean()
|
|
)
|
|
|
|
# FreqAI needs the following lines in order to detect features and automatically
|
|
# expand upon them.
|
|
indicators = [col for col in informative if col.startswith("%")]
|
|
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
|
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
|
|
if n == 0:
|
|
continue
|
|
informative_shift = informative[indicators].shift(n)
|
|
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
|
|
informative = pd.concat((informative, informative_shift), axis=1)
|
|
|
|
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
|
|
skip_columns = [
|
|
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
|
|
]
|
|
df = df.drop(columns=skip_columns)
|
|
|
|
# User can set the "target" here (in present case it is the
|
|
# "up" or "down")
|
|
if set_generalized_indicators:
|
|
# User "looks into the future" here to figure out if the future
|
|
# will be "up" or "down". This same column name is available to
|
|
# the user
|
|
df['&s-up_or_down'] = np.where(df["close"].shift(-50) >
|
|
df["close"], 'up', 'down')
|
|
|
|
return df
|
|
|
|
# flake8: noqa: C901
|
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
# User creates their own custom strat here. Present example is a supertrend
|
|
# based strategy.
|
|
|
|
for multiplier in self.buy_m1.range:
|
|
for period in self.buy_p1.range:
|
|
dataframe[f"supertrend_1_buy_{multiplier}_{period}"] = self.supertrend(
|
|
dataframe, multiplier, period
|
|
)["STX"]
|
|
|
|
for multiplier in self.buy_m2.range:
|
|
for period in self.buy_p2.range:
|
|
dataframe[f"supertrend_2_buy_{multiplier}_{period}"] = self.supertrend(
|
|
dataframe, multiplier, period
|
|
)["STX"]
|
|
|
|
for multiplier in self.buy_m3.range:
|
|
for period in self.buy_p3.range:
|
|
dataframe[f"supertrend_3_buy_{multiplier}_{period}"] = self.supertrend(
|
|
dataframe, multiplier, period
|
|
)["STX"]
|
|
|
|
for multiplier in self.sell_m1.range:
|
|
for period in self.sell_p1.range:
|
|
dataframe[f"supertrend_1_sell_{multiplier}_{period}"] = self.supertrend(
|
|
dataframe, multiplier, period
|
|
)["STX"]
|
|
|
|
for multiplier in self.sell_m2.range:
|
|
for period in self.sell_p2.range:
|
|
dataframe[f"supertrend_2_sell_{multiplier}_{period}"] = self.supertrend(
|
|
dataframe, multiplier, period
|
|
)["STX"]
|
|
|
|
for multiplier in self.sell_m3.range:
|
|
for period in self.sell_p3.range:
|
|
dataframe[f"supertrend_3_sell_{multiplier}_{period}"] = self.supertrend(
|
|
dataframe, multiplier, period
|
|
)["STX"]
|
|
|
|
dataframe = self.freqai.start(dataframe, metadata, self)
|
|
|
|
return dataframe
|
|
|
|
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
# User now can use their custom strat creation in addition to their
|
|
# future prediction "up" or "down".
|
|
|
|
df.loc[
|
|
(df[f"supertrend_1_buy_{self.buy_m1.value}_{self.buy_p1.value}"] == "up") &
|
|
(df[f"supertrend_2_buy_{self.buy_m2.value}_{self.buy_p2.value}"] == "up") &
|
|
(df[f"supertrend_3_buy_{self.buy_m3.value}_{self.buy_p3.value}"] == "up") &
|
|
(df["do_predict"] == 1) &
|
|
(df['&s-up_or_down'] == 'up'),
|
|
"enter_long",
|
|
] = 1
|
|
|
|
df.loc[
|
|
(df[f"supertrend_1_sell_{self.sell_m1.value}_{self.sell_p1.value}"] == "down") &
|
|
(df[f"supertrend_2_sell_{self.sell_m2.value}_{self.sell_p2.value}"] == "down") &
|
|
(df[f"supertrend_3_sell_{self.sell_m3.value}_{self.sell_p3.value}"] == "down") &
|
|
(df["do_predict"] == 1) &
|
|
(df['&s-up_or_down'] == 'down'),
|
|
"enter_short",
|
|
] = 1
|
|
|
|
return df
|
|
|
|
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
df.loc[
|
|
(df[f"supertrend_2_sell_{self.sell_m2.value}_{self.sell_p2.value}"] == "down"),
|
|
"exit_long",
|
|
] = 1
|
|
|
|
df.loc[
|
|
(df[f"supertrend_2_buy_{self.buy_m2.value}_{self.buy_p2.value}"] == "up"),
|
|
"exit_short",
|
|
] = 1
|
|
|
|
return df
|
|
|
|
def get_ticker_indicator(self):
|
|
return int(self.config["timeframe"][:-1])
|
|
|
|
def confirm_trade_entry(self, pair: str, order_type: str, amount: float,
|
|
rate: float, time_in_force: str, current_time, entry_tag, side: str,
|
|
**kwargs, ) -> bool:
|
|
|
|
df, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
|
last_candle = df.iloc[-1].squeeze()
|
|
|
|
if side == "long":
|
|
if rate > (last_candle["close"] * (1 + 0.0025)):
|
|
return False
|
|
else:
|
|
if rate < (last_candle["close"] * (1 - 0.0025)):
|
|
return False
|
|
|
|
return True
|
|
|
|
"""
|
|
Supertrend Indicator; adapted for freqtrade, optimized by the math genius.
|
|
from: Perkmeister#2394
|
|
"""
|
|
|
|
def supertrend(self, dataframe: DataFrame, multiplier, period):
|
|
|
|
df = dataframe.copy()
|
|
last_row = dataframe.tail(1).index.item()
|
|
|
|
df['TR'] = ta.TRANGE(df)
|
|
df['ATR'] = ta.SMA(df['TR'], period)
|
|
|
|
st = 'ST_' + str(period) + '_' + str(multiplier)
|
|
stx = 'STX_' + str(period) + '_' + str(multiplier)
|
|
|
|
# Compute basic upper and lower bands
|
|
BASIC_UB = ((df['high'] + df['low']) / 2 + multiplier * df['ATR']).values
|
|
BASIC_LB = ((df['high'] + df['low']) / 2 - multiplier * df['ATR']).values
|
|
FINAL_UB = np.zeros(last_row + 1)
|
|
FINAL_LB = np.zeros(last_row + 1)
|
|
ST = np.zeros(last_row + 1)
|
|
CLOSE = df['close'].values
|
|
|
|
# Compute final upper and lower bands
|
|
for i in range(period, last_row + 1):
|
|
FINAL_UB[i] = (BASIC_UB[i] if BASIC_UB[i] < FINAL_UB[i - 1]
|
|
or CLOSE[i - 1] > FINAL_UB[i - 1] else FINAL_UB[i - 1])
|
|
FINAL_LB[i] = (BASIC_LB[i] if BASIC_LB[i] > FINAL_LB[i - 1]
|
|
or CLOSE[i - 1] < FINAL_LB[i - 1] else FINAL_LB[i - 1])
|
|
|
|
# Set the Supertrend value
|
|
for i in range(period, last_row + 1):
|
|
ST[i] = FINAL_UB[i] if ST[i - 1] == FINAL_UB[i - 1] and CLOSE[i] <= FINAL_UB[i] else \
|
|
FINAL_LB[i] if ST[i - 1] == FINAL_UB[i - 1] and CLOSE[i] > FINAL_UB[i] else \
|
|
FINAL_LB[i] if ST[i - 1] == FINAL_LB[i - 1] and CLOSE[i] >= FINAL_LB[i] else \
|
|
FINAL_UB[i] if ST[i - 1] == FINAL_LB[i - 1] and CLOSE[i] < FINAL_LB[i] else 0.00
|
|
df_ST = pd.DataFrame(ST, columns=[st])
|
|
df = pd.concat([df, df_ST], axis=1)
|
|
|
|
# Mark the trend direction up/down
|
|
df[stx] = np.where((df[st] > 0.00), np.where((df['close'] < df[st]), 'down', 'up'), np.NaN)
|
|
|
|
df.fillna(0, inplace=True)
|
|
|
|
return DataFrame(index=df.index, data={
|
|
'ST': df[st],
|
|
'STX': df[stx]
|
|
})
|