57 lines
1.7 KiB
Python
57 lines
1.7 KiB
Python
from abc import ABC, abstractmethod
|
|
from pandas import DataFrame
|
|
from typing import Dict
|
|
|
|
|
|
class IStrategy(ABC):
|
|
@property
|
|
def name(self) -> str:
|
|
"""
|
|
Name of the strategy.
|
|
:return: str representation of the class name
|
|
"""
|
|
return self.__class__.__name__
|
|
|
|
"""
|
|
Attributes you can use:
|
|
minimal_roi -> Dict: Minimal ROI designed for the strategy
|
|
stoploss -> float: ptimal stoploss designed for the strategy
|
|
"""
|
|
|
|
@abstractmethod
|
|
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
|
|
"""
|
|
Populate indicators that will be used in the Buy and Sell strategy
|
|
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
|
|
:return: a Dataframe with all mandatory indicators for the strategies
|
|
"""
|
|
|
|
@abstractmethod
|
|
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
|
"""
|
|
Based on TA indicators, populates the buy signal for the given dataframe
|
|
:param dataframe: DataFrame
|
|
:return: DataFrame with buy column
|
|
:return:
|
|
"""
|
|
|
|
@abstractmethod
|
|
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
|
|
"""
|
|
Based on TA indicators, populates the sell signal for the given dataframe
|
|
:param dataframe: DataFrame
|
|
:return: DataFrame with buy column
|
|
"""
|
|
|
|
@abstractmethod
|
|
def hyperopt_space(self) -> Dict:
|
|
"""
|
|
Define your Hyperopt space for the strategy
|
|
"""
|
|
|
|
@abstractmethod
|
|
def buy_strategy_generator(self, params) -> None:
|
|
"""
|
|
Define the buy strategy parameters to be used by hyperopt
|
|
"""
|