ed10048394
Allow use of config in custom hyperopt methods
198 lines
7.4 KiB
Python
198 lines
7.4 KiB
Python
"""
|
|
IHyperOpt interface
|
|
This module defines the interface to apply for hyperopts
|
|
"""
|
|
import logging
|
|
import math
|
|
|
|
from abc import ABC, abstractmethod
|
|
from typing import Dict, Any, Callable, List
|
|
|
|
from pandas import DataFrame
|
|
from skopt.space import Dimension, Integer, Real
|
|
|
|
from freqtrade import OperationalException
|
|
from freqtrade.exchange import timeframe_to_minutes
|
|
from freqtrade.misc import round_dict
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _format_exception_message(method: str, space: str) -> str:
|
|
return (f"The '{space}' space is included into the hyperoptimization "
|
|
f"but {method}() method is not found in your "
|
|
f"custom Hyperopt class. You should either implement this "
|
|
f"method or remove the '{space}' space from hyperoptimization.")
|
|
|
|
|
|
class IHyperOpt(ABC):
|
|
"""
|
|
Interface for freqtrade hyperopts
|
|
Defines the mandatory structure must follow any custom hyperopts
|
|
|
|
Class attributes you can use:
|
|
ticker_interval -> int: value of the ticker interval to use for the strategy
|
|
"""
|
|
ticker_interval: str
|
|
|
|
def __init__(self, config: dict) -> None:
|
|
self.config = config
|
|
|
|
# Assign ticker_interval to be used in hyperopt
|
|
IHyperOpt.ticker_interval = str(config['ticker_interval'])
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Populate indicators that will be used in the Buy and Sell strategy.
|
|
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe().
|
|
:return: A Dataframe with all mandatory indicators for the strategies.
|
|
"""
|
|
|
|
@staticmethod
|
|
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
"""
|
|
Create a buy strategy generator.
|
|
"""
|
|
raise OperationalException(_format_exception_message('buy_strategy_generator', 'buy'))
|
|
|
|
@staticmethod
|
|
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
"""
|
|
Create a sell strategy generator.
|
|
"""
|
|
raise OperationalException(_format_exception_message('sell_strategy_generator', 'sell'))
|
|
|
|
@staticmethod
|
|
def indicator_space() -> List[Dimension]:
|
|
"""
|
|
Create an indicator space.
|
|
"""
|
|
raise OperationalException(_format_exception_message('indicator_space', 'buy'))
|
|
|
|
@staticmethod
|
|
def sell_indicator_space() -> List[Dimension]:
|
|
"""
|
|
Create a sell indicator space.
|
|
"""
|
|
raise OperationalException(_format_exception_message('sell_indicator_space', 'sell'))
|
|
|
|
@staticmethod
|
|
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
|
"""
|
|
Create a ROI table.
|
|
|
|
Generates the ROI table that will be used by Hyperopt.
|
|
You may override it in your custom Hyperopt class.
|
|
"""
|
|
roi_table = {}
|
|
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
|
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
|
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
|
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
|
|
|
return roi_table
|
|
|
|
@staticmethod
|
|
def roi_space() -> List[Dimension]:
|
|
"""
|
|
Create a ROI space.
|
|
|
|
Defines values to search for each ROI steps.
|
|
|
|
This method implements adaptive roi hyperspace with varied
|
|
ranges for parameters which automatically adapts to the
|
|
ticker interval used.
|
|
|
|
It's used by Freqtrade by default, if no custom roi_space method is defined.
|
|
"""
|
|
|
|
# Default scaling coefficients for the roi hyperspace. Can be changed
|
|
# to adjust resulting ranges of the ROI tables.
|
|
# Increase if you need wider ranges in the roi hyperspace, decrease if shorter
|
|
# ranges are needed.
|
|
roi_t_alpha = 1.0
|
|
roi_p_alpha = 1.0
|
|
|
|
ticker_interval_mins = timeframe_to_minutes(IHyperOpt.ticker_interval)
|
|
|
|
# We define here limits for the ROI space parameters automagically adapted to the
|
|
# ticker_interval used by the bot:
|
|
#
|
|
# * 'roi_t' (limits for the time intervals in the ROI tables) components
|
|
# are scaled linearly.
|
|
# * 'roi_p' (limits for the ROI value steps) components are scaled logarithmically.
|
|
#
|
|
# The scaling is designed so that it maps exactly to the legacy Freqtrade roi_space()
|
|
# method for the 5m ticker interval.
|
|
roi_t_scale = ticker_interval_mins / 5
|
|
roi_p_scale = math.log1p(ticker_interval_mins) / math.log1p(5)
|
|
roi_limits = {
|
|
'roi_t1_min': int(10 * roi_t_scale * roi_t_alpha),
|
|
'roi_t1_max': int(120 * roi_t_scale * roi_t_alpha),
|
|
'roi_t2_min': int(10 * roi_t_scale * roi_t_alpha),
|
|
'roi_t2_max': int(60 * roi_t_scale * roi_t_alpha),
|
|
'roi_t3_min': int(10 * roi_t_scale * roi_t_alpha),
|
|
'roi_t3_max': int(40 * roi_t_scale * roi_t_alpha),
|
|
'roi_p1_min': 0.01 * roi_p_scale * roi_p_alpha,
|
|
'roi_p1_max': 0.04 * roi_p_scale * roi_p_alpha,
|
|
'roi_p2_min': 0.01 * roi_p_scale * roi_p_alpha,
|
|
'roi_p2_max': 0.07 * roi_p_scale * roi_p_alpha,
|
|
'roi_p3_min': 0.01 * roi_p_scale * roi_p_alpha,
|
|
'roi_p3_max': 0.20 * roi_p_scale * roi_p_alpha,
|
|
}
|
|
logger.debug(f"Using roi space limits: {roi_limits}")
|
|
p = {
|
|
'roi_t1': roi_limits['roi_t1_min'],
|
|
'roi_t2': roi_limits['roi_t2_min'],
|
|
'roi_t3': roi_limits['roi_t3_min'],
|
|
'roi_p1': roi_limits['roi_p1_min'],
|
|
'roi_p2': roi_limits['roi_p2_min'],
|
|
'roi_p3': roi_limits['roi_p3_min'],
|
|
}
|
|
logger.info(f"Min roi table: {round_dict(IHyperOpt.generate_roi_table(p), 5)}")
|
|
p = {
|
|
'roi_t1': roi_limits['roi_t1_max'],
|
|
'roi_t2': roi_limits['roi_t2_max'],
|
|
'roi_t3': roi_limits['roi_t3_max'],
|
|
'roi_p1': roi_limits['roi_p1_max'],
|
|
'roi_p2': roi_limits['roi_p2_max'],
|
|
'roi_p3': roi_limits['roi_p3_max'],
|
|
}
|
|
logger.info(f"Max roi table: {round_dict(IHyperOpt.generate_roi_table(p), 5)}")
|
|
|
|
return [
|
|
Integer(roi_limits['roi_t1_min'], roi_limits['roi_t1_max'], name='roi_t1'),
|
|
Integer(roi_limits['roi_t2_min'], roi_limits['roi_t2_max'], name='roi_t2'),
|
|
Integer(roi_limits['roi_t3_min'], roi_limits['roi_t3_max'], name='roi_t3'),
|
|
Real(roi_limits['roi_p1_min'], roi_limits['roi_p1_max'], name='roi_p1'),
|
|
Real(roi_limits['roi_p2_min'], roi_limits['roi_p2_max'], name='roi_p2'),
|
|
Real(roi_limits['roi_p3_min'], roi_limits['roi_p3_max'], name='roi_p3'),
|
|
]
|
|
|
|
@staticmethod
|
|
def stoploss_space() -> List[Dimension]:
|
|
"""
|
|
Create a stoploss space.
|
|
|
|
Defines range of stoploss values to search.
|
|
You may override it in your custom Hyperopt class.
|
|
"""
|
|
return [
|
|
Real(-0.35, -0.02, name='stoploss'),
|
|
]
|
|
|
|
# This is needed for proper unpickling the class attribute ticker_interval
|
|
# which is set to the actual value by the resolver.
|
|
# Why do I still need such shamanic mantras in modern python?
|
|
def __getstate__(self):
|
|
state = self.__dict__.copy()
|
|
state['ticker_interval'] = self.ticker_interval
|
|
return state
|
|
|
|
def __setstate__(self, state):
|
|
self.__dict__.update(state)
|
|
IHyperOpt.ticker_interval = state['ticker_interval']
|