60 lines
1.6 KiB
Python
60 lines
1.6 KiB
Python
"""
|
|
IHyperOpt interface
|
|
This module defines the interface to apply for hyperopts
|
|
"""
|
|
|
|
from abc import ABC, abstractmethod
|
|
from typing import Dict, Any, Callable
|
|
|
|
from pandas import DataFrame
|
|
|
|
|
|
class IHyperOpt(ABC):
|
|
"""
|
|
Interface for freqtrade hyperopts
|
|
Defines the mandatory structure must follow any custom strategies
|
|
|
|
Attributes you can use:
|
|
minimal_roi -> Dict: Minimal ROI designed for the strategy
|
|
stoploss -> float: optimal stoploss designed for the strategy
|
|
ticker_interval -> int: value of the ticker interval to use for the strategy
|
|
"""
|
|
|
|
@abstractmethod
|
|
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
|
|
"""
|
|
Populate indicators that will be used in the Buy and Sell strategy
|
|
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
|
|
:return: a Dataframe with all mandatory indicators for the strategies
|
|
"""
|
|
|
|
@abstractmethod
|
|
def buy_strategy_generator(self, params: Dict[str, Any]) -> Callable:
|
|
"""
|
|
Create a buy strategy generator
|
|
"""
|
|
|
|
@abstractmethod
|
|
def indicator_space(self) -> Dict[str, Any]:
|
|
"""
|
|
Create an indicator space
|
|
"""
|
|
|
|
@abstractmethod
|
|
def generate_roi_table(self, params: Dict) -> Dict[int, float]:
|
|
"""
|
|
Create an roi table
|
|
"""
|
|
|
|
@abstractmethod
|
|
def stoploss_space(self) -> Dict[str, Any]:
|
|
"""
|
|
Create a stoploss space
|
|
"""
|
|
|
|
@abstractmethod
|
|
def roi_space(self) -> Dict[str, Any]:
|
|
"""
|
|
Create a roi space
|
|
"""
|