419 lines
17 KiB
Python
419 lines
17 KiB
Python
# pragma pylint: disable=too-many-instance-attributes, pointless-string-statement
|
|
|
|
"""
|
|
This module contains the hyperopt logic
|
|
"""
|
|
|
|
import logging
|
|
import sys
|
|
|
|
from collections import OrderedDict
|
|
from operator import itemgetter
|
|
from pathlib import Path
|
|
from pprint import pprint
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import rapidjson
|
|
|
|
from colorama import init as colorama_init
|
|
from colorama import Fore, Style
|
|
from joblib import Parallel, delayed, dump, load, wrap_non_picklable_objects, cpu_count
|
|
from pandas import DataFrame
|
|
from skopt import Optimizer
|
|
from skopt.space import Dimension
|
|
|
|
from freqtrade.configuration import TimeRange
|
|
from freqtrade.data.history import load_data, get_timeframe
|
|
from freqtrade.misc import round_dict
|
|
from freqtrade.optimize.backtesting import Backtesting
|
|
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
|
|
from freqtrade.optimize.hyperopt_interface import IHyperOpt # noqa: F4
|
|
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss # noqa: F4
|
|
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver, HyperOptLossResolver
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
INITIAL_POINTS = 30
|
|
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
|
|
|
|
|
|
class Hyperopt:
|
|
"""
|
|
Hyperopt class, this class contains all the logic to run a hyperopt simulation
|
|
|
|
To run a backtest:
|
|
hyperopt = Hyperopt(config)
|
|
hyperopt.start()
|
|
"""
|
|
def __init__(self, config: Dict[str, Any]) -> None:
|
|
self.config = config
|
|
self.backtesting = Backtesting(self.config)
|
|
|
|
self.custom_hyperopt = HyperOptResolver(self.config).hyperopt
|
|
|
|
self.custom_hyperoptloss = HyperOptLossResolver(self.config).hyperoptloss
|
|
self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function
|
|
|
|
self.trials_file = (self.config['user_data_dir'] /
|
|
'hyperopt_results' / 'hyperopt_results.pickle')
|
|
self.tickerdata_pickle = (self.config['user_data_dir'] /
|
|
'hyperopt_results' / 'hyperopt_tickerdata.pkl')
|
|
self.total_epochs = config.get('epochs', 0)
|
|
|
|
self.current_best_loss = 100
|
|
|
|
if not self.config.get('hyperopt_continue'):
|
|
self.clean_hyperopt()
|
|
else:
|
|
logger.info("Continuing on previous hyperopt results.")
|
|
|
|
# Previous evaluations
|
|
self.trials: List = []
|
|
|
|
# Populate functions here (hasattr is slow so should not be run during "regular" operations)
|
|
if hasattr(self.custom_hyperopt, 'populate_indicators'):
|
|
self.backtesting.strategy.advise_indicators = \
|
|
self.custom_hyperopt.populate_indicators # type: ignore
|
|
if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
|
|
self.backtesting.advise_buy = self.custom_hyperopt.populate_buy_trend # type: ignore
|
|
if hasattr(self.custom_hyperopt, 'populate_sell_trend'):
|
|
self.backtesting.advise_sell = self.custom_hyperopt.populate_sell_trend # type: ignore
|
|
|
|
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
|
|
if self.config.get('use_max_market_positions', True):
|
|
self.max_open_trades = self.config['max_open_trades']
|
|
else:
|
|
logger.debug('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
|
|
self.max_open_trades = 0
|
|
self.position_stacking = self.config.get('position_stacking', False),
|
|
|
|
if self.has_space('sell'):
|
|
# Make sure experimental is enabled
|
|
if 'experimental' not in self.config:
|
|
self.config['experimental'] = {}
|
|
self.config['experimental']['use_sell_signal'] = True
|
|
|
|
@staticmethod
|
|
def get_lock_filename(config) -> str:
|
|
|
|
return str(config['user_data_dir'] / 'hyperopt.lock')
|
|
|
|
def clean_hyperopt(self):
|
|
"""
|
|
Remove hyperopt pickle files to restart hyperopt.
|
|
"""
|
|
for f in [self.tickerdata_pickle, self.trials_file]:
|
|
p = Path(f)
|
|
if p.is_file():
|
|
logger.info(f"Removing `{p}`.")
|
|
p.unlink()
|
|
|
|
def get_args(self, params):
|
|
|
|
dimensions = self.dimensions
|
|
|
|
# Ensure the number of dimensions match
|
|
# the number of parameters in the list x.
|
|
if len(params) != len(dimensions):
|
|
raise ValueError('Mismatch in number of search-space dimensions. '
|
|
f'len(dimensions)=={len(dimensions)} and len(x)=={len(params)}')
|
|
|
|
# Create a dict where the keys are the names of the dimensions
|
|
# and the values are taken from the list of parameters x.
|
|
arg_dict = {dim.name: value for dim, value in zip(dimensions, params)}
|
|
return arg_dict
|
|
|
|
def save_trials(self) -> None:
|
|
"""
|
|
Save hyperopt trials to file
|
|
"""
|
|
if self.trials:
|
|
logger.info("Saving %d evaluations to '%s'", len(self.trials), self.trials_file)
|
|
dump(self.trials, self.trials_file)
|
|
|
|
def read_trials(self) -> List:
|
|
"""
|
|
Read hyperopt trials file
|
|
"""
|
|
logger.info("Reading Trials from '%s'", self.trials_file)
|
|
trials = load(self.trials_file)
|
|
self.trials_file.unlink()
|
|
return trials
|
|
|
|
def log_trials_result(self) -> None:
|
|
"""
|
|
Display Best hyperopt result
|
|
"""
|
|
results = sorted(self.trials, key=itemgetter('loss'))
|
|
best_result = results[0]
|
|
params = best_result['params']
|
|
log_str = self.format_results_logstring(best_result)
|
|
print(f"\nBest result:\n\n{log_str}\n")
|
|
|
|
if self.config.get('print_json'):
|
|
result_dict: Dict = {}
|
|
if self.has_space('buy') or self.has_space('sell'):
|
|
result_dict['params'] = {}
|
|
if self.has_space('buy'):
|
|
result_dict['params'].update({p.name: params.get(p.name)
|
|
for p in self.hyperopt_space('buy')})
|
|
if self.has_space('sell'):
|
|
result_dict['params'].update({p.name: params.get(p.name)
|
|
for p in self.hyperopt_space('sell')})
|
|
if self.has_space('roi'):
|
|
# Convert keys in min_roi dict to strings because
|
|
# rapidjson cannot dump dicts with integer keys...
|
|
# OrderedDict is used to keep the numeric order of the items
|
|
# in the dict.
|
|
result_dict['minimal_roi'] = OrderedDict(
|
|
(str(k), v) for k, v in self.custom_hyperopt.generate_roi_table(params).items()
|
|
)
|
|
if self.has_space('stoploss'):
|
|
result_dict['stoploss'] = params.get('stoploss')
|
|
print(rapidjson.dumps(result_dict, default=str, number_mode=rapidjson.NM_NATIVE))
|
|
else:
|
|
if self.has_space('buy'):
|
|
print('Buy hyperspace params:')
|
|
pprint({p.name: params.get(p.name) for p in self.hyperopt_space('buy')},
|
|
indent=4)
|
|
if self.has_space('sell'):
|
|
print('Sell hyperspace params:')
|
|
pprint({p.name: params.get(p.name) for p in self.hyperopt_space('sell')},
|
|
indent=4)
|
|
if self.has_space('roi'):
|
|
print("ROI table:")
|
|
# Round printed values to 5 digits after the decimal point
|
|
pprint(round_dict(self.custom_hyperopt.generate_roi_table(params), 5), indent=4)
|
|
if self.has_space('stoploss'):
|
|
# Also round to 5 digits after the decimal point
|
|
print(f"Stoploss: {round(params.get('stoploss'), 5)}")
|
|
|
|
def log_results(self, results) -> None:
|
|
"""
|
|
Log results if it is better than any previous evaluation
|
|
"""
|
|
print_all = self.config.get('print_all', False)
|
|
is_best_loss = results['loss'] < self.current_best_loss
|
|
if print_all or is_best_loss:
|
|
if is_best_loss:
|
|
self.current_best_loss = results['loss']
|
|
log_str = self.format_results_logstring(results)
|
|
# Colorize output
|
|
if self.config.get('print_colorized', False):
|
|
if results['total_profit'] > 0:
|
|
log_str = Fore.GREEN + log_str
|
|
if print_all and is_best_loss:
|
|
log_str = Style.BRIGHT + log_str
|
|
if print_all:
|
|
print(log_str)
|
|
else:
|
|
print('\n' + log_str)
|
|
else:
|
|
print('.', end='')
|
|
sys.stdout.flush()
|
|
|
|
def format_results_logstring(self, results) -> str:
|
|
# Output human-friendly index here (starting from 1)
|
|
current = results['current_epoch'] + 1
|
|
total = self.total_epochs
|
|
res = results['results_explanation']
|
|
loss = results['loss']
|
|
log_str = f'{current:5d}/{total}: {res} Objective: {loss:.5f}'
|
|
log_str = f'*{log_str}' if results['is_initial_point'] else f' {log_str}'
|
|
return log_str
|
|
|
|
def has_space(self, space: str) -> bool:
|
|
"""
|
|
Tell if a space value is contained in the configuration
|
|
"""
|
|
return any(s in self.config['spaces'] for s in [space, 'all'])
|
|
|
|
def hyperopt_space(self, space: Optional[str] = None) -> List[Dimension]:
|
|
"""
|
|
Return the dimensions in the hyperoptimization space.
|
|
:param space: Defines hyperspace to return dimensions for.
|
|
If None, then the self.has_space() will be used to return dimensions
|
|
for all hyperspaces used.
|
|
"""
|
|
spaces: List[Dimension] = []
|
|
if space == 'buy' or (space is None and self.has_space('buy')):
|
|
logger.debug("Hyperopt has 'buy' space")
|
|
spaces += self.custom_hyperopt.indicator_space()
|
|
if space == 'sell' or (space is None and self.has_space('sell')):
|
|
logger.debug("Hyperopt has 'sell' space")
|
|
spaces += self.custom_hyperopt.sell_indicator_space()
|
|
if space == 'roi' or (space is None and self.has_space('roi')):
|
|
logger.debug("Hyperopt has 'roi' space")
|
|
spaces += self.custom_hyperopt.roi_space()
|
|
if space == 'stoploss' or (space is None and self.has_space('stoploss')):
|
|
logger.debug("Hyperopt has 'stoploss' space")
|
|
spaces += self.custom_hyperopt.stoploss_space()
|
|
return spaces
|
|
|
|
def generate_optimizer(self, _params: Dict) -> Dict:
|
|
"""
|
|
Used Optimize function. Called once per epoch to optimize whatever is configured.
|
|
Keep this function as optimized as possible!
|
|
"""
|
|
params = self.get_args(_params)
|
|
if self.has_space('roi'):
|
|
self.backtesting.strategy.minimal_roi = self.custom_hyperopt.generate_roi_table(params)
|
|
|
|
if self.has_space('buy'):
|
|
self.backtesting.advise_buy = self.custom_hyperopt.buy_strategy_generator(params)
|
|
|
|
if self.has_space('sell'):
|
|
self.backtesting.advise_sell = self.custom_hyperopt.sell_strategy_generator(params)
|
|
|
|
if self.has_space('stoploss'):
|
|
self.backtesting.strategy.stoploss = params['stoploss']
|
|
|
|
processed = load(self.tickerdata_pickle)
|
|
|
|
min_date, max_date = get_timeframe(processed)
|
|
|
|
results = self.backtesting.backtest(
|
|
{
|
|
'stake_amount': self.config['stake_amount'],
|
|
'processed': processed,
|
|
'max_open_trades': self.max_open_trades,
|
|
'position_stacking': self.position_stacking,
|
|
'start_date': min_date,
|
|
'end_date': max_date,
|
|
}
|
|
)
|
|
results_explanation = self.format_results(results)
|
|
|
|
trade_count = len(results.index)
|
|
total_profit = results.profit_abs.sum()
|
|
|
|
# If this evaluation contains too short amount of trades to be
|
|
# interesting -- consider it as 'bad' (assigned max. loss value)
|
|
# in order to cast this hyperspace point away from optimization
|
|
# path. We do not want to optimize 'hodl' strategies.
|
|
if trade_count < self.config['hyperopt_min_trades']:
|
|
return {
|
|
'loss': MAX_LOSS,
|
|
'params': params,
|
|
'results_explanation': results_explanation,
|
|
'total_profit': total_profit,
|
|
}
|
|
|
|
loss = self.calculate_loss(results=results, trade_count=trade_count,
|
|
min_date=min_date.datetime, max_date=max_date.datetime)
|
|
|
|
return {
|
|
'loss': loss,
|
|
'params': params,
|
|
'results_explanation': results_explanation,
|
|
'total_profit': total_profit,
|
|
}
|
|
|
|
def format_results(self, results: DataFrame) -> str:
|
|
"""
|
|
Return the formatted results explanation in a string
|
|
"""
|
|
trades = len(results.index)
|
|
avg_profit = results.profit_percent.mean() * 100.0
|
|
total_profit = results.profit_abs.sum()
|
|
stake_cur = self.config['stake_currency']
|
|
profit = results.profit_percent.sum() * 100.0
|
|
duration = results.trade_duration.mean()
|
|
|
|
return (f'{trades:6d} trades. Avg profit {avg_profit: 5.2f}%. '
|
|
f'Total profit {total_profit: 11.8f} {stake_cur} '
|
|
f'({profit: 7.2f}Σ%). Avg duration {duration:5.1f} mins.')
|
|
|
|
def get_optimizer(self, dimensions, cpu_count) -> Optimizer:
|
|
return Optimizer(
|
|
dimensions,
|
|
base_estimator="ET",
|
|
acq_optimizer="auto",
|
|
n_initial_points=INITIAL_POINTS,
|
|
acq_optimizer_kwargs={'n_jobs': cpu_count},
|
|
random_state=self.config.get('hyperopt_random_state', None)
|
|
)
|
|
|
|
def run_optimizer_parallel(self, parallel, asked) -> List:
|
|
return parallel(delayed(
|
|
wrap_non_picklable_objects(self.generate_optimizer))(v) for v in asked)
|
|
|
|
def load_previous_results(self):
|
|
""" read trials file if we have one """
|
|
if self.trials_file.is_file() and self.trials_file.stat().st_size > 0:
|
|
self.trials = self.read_trials()
|
|
logger.info(
|
|
'Loaded %d previous evaluations from disk.',
|
|
len(self.trials)
|
|
)
|
|
|
|
def start(self) -> None:
|
|
timerange = TimeRange.parse_timerange(None if self.config.get(
|
|
'timerange') is None else str(self.config.get('timerange')))
|
|
data = load_data(
|
|
datadir=Path(self.config['datadir']),
|
|
pairs=self.config['exchange']['pair_whitelist'],
|
|
ticker_interval=self.backtesting.ticker_interval,
|
|
refresh_pairs=self.config.get('refresh_pairs', False),
|
|
exchange=self.backtesting.exchange,
|
|
timerange=timerange
|
|
)
|
|
|
|
if not data:
|
|
logger.critical("No data found. Terminating.")
|
|
return
|
|
|
|
min_date, max_date = get_timeframe(data)
|
|
|
|
logger.info(
|
|
'Hyperopting with data from %s up to %s (%s days)..',
|
|
min_date.isoformat(),
|
|
max_date.isoformat(),
|
|
(max_date - min_date).days
|
|
)
|
|
|
|
preprocessed = self.backtesting.strategy.tickerdata_to_dataframe(data)
|
|
|
|
dump(preprocessed, self.tickerdata_pickle)
|
|
|
|
# We don't need exchange instance anymore while running hyperopt
|
|
self.backtesting.exchange = None # type: ignore
|
|
|
|
self.load_previous_results()
|
|
|
|
cpus = cpu_count()
|
|
logger.info(f"Found {cpus} CPU cores. Let's make them scream!")
|
|
config_jobs = self.config.get('hyperopt_jobs', -1)
|
|
logger.info(f'Number of parallel jobs set as: {config_jobs}')
|
|
|
|
self.dimensions = self.hyperopt_space()
|
|
self.opt = self.get_optimizer(self.dimensions, config_jobs)
|
|
|
|
if self.config.get('print_colorized', False):
|
|
colorama_init(autoreset=True)
|
|
|
|
try:
|
|
with Parallel(n_jobs=config_jobs) as parallel:
|
|
jobs = parallel._effective_n_jobs()
|
|
logger.info(f'Effective number of parallel workers used: {jobs}')
|
|
EVALS = max(self.total_epochs // jobs, 1)
|
|
for i in range(EVALS):
|
|
asked = self.opt.ask(n_points=jobs)
|
|
f_val = self.run_optimizer_parallel(parallel, asked)
|
|
self.opt.tell(asked, [v['loss'] for v in f_val])
|
|
for j in range(jobs):
|
|
current = i * jobs + j
|
|
val = f_val[j]
|
|
val['current_epoch'] = current
|
|
val['is_initial_point'] = current < INITIAL_POINTS
|
|
self.log_results(val)
|
|
self.trials.append(val)
|
|
logger.debug(f"Optimizer epoch evaluated: {val}")
|
|
except KeyboardInterrupt:
|
|
print('User interrupted..')
|
|
|
|
self.save_trials()
|
|
self.log_trials_result()
|