421 lines
14 KiB
Python
421 lines
14 KiB
Python
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
|
|
|
|
import json
|
|
import math
|
|
from typing import List
|
|
from copy import deepcopy
|
|
from unittest.mock import MagicMock
|
|
from arrow import Arrow
|
|
import pandas as pd
|
|
from freqtrade import optimize
|
|
from freqtrade.optimize.backtesting import Backtesting, start, setup_configuration
|
|
from freqtrade.arguments import Arguments
|
|
from freqtrade.analyze import Analyze
|
|
import freqtrade.tests.conftest as tt # test tools
|
|
|
|
|
|
# Avoid to reinit the same object again and again
|
|
_BACKTESTING = Backtesting(tt.default_conf())
|
|
|
|
|
|
def get_args(args) -> List[str]:
|
|
return Arguments(args, '').get_parsed_arg()
|
|
|
|
|
|
def trim_dictlist(dict_list, num):
|
|
new = {}
|
|
for pair, pair_data in dict_list.items():
|
|
new[pair] = pair_data[num:]
|
|
return new
|
|
|
|
|
|
def load_data_test(what):
|
|
timerange = ((None, 'line'), None, -100)
|
|
data = optimize.load_data(None, ticker_interval=1, pairs=['BTC_UNITEST'], timerange=timerange)
|
|
pair = data['BTC_UNITEST']
|
|
datalen = len(pair)
|
|
# Depending on the what parameter we now adjust the
|
|
# loaded data looks:
|
|
# pair :: [{'O': 0.123, 'H': 0.123, 'L': 0.123,
|
|
# 'C': 0.123, 'V': 123.123,
|
|
# 'T': '2017-11-04T23:02:00', 'BV': 0.123}]
|
|
base = 0.001
|
|
if what == 'raise':
|
|
return {'BTC_UNITEST':
|
|
[{'T': pair[x]['T'], # Keep old dates
|
|
'V': pair[x]['V'], # Keep old volume
|
|
'BV': pair[x]['BV'], # keep too
|
|
'O': x * base, # But replace O,H,L,C
|
|
'H': x * base + 0.0001,
|
|
'L': x * base - 0.0001,
|
|
'C': x * base} for x in range(0, datalen)]}
|
|
if what == 'lower':
|
|
return {'BTC_UNITEST':
|
|
[{'T': pair[x]['T'], # Keep old dates
|
|
'V': pair[x]['V'], # Keep old volume
|
|
'BV': pair[x]['BV'], # keep too
|
|
'O': 1 - x * base, # But replace O,H,L,C
|
|
'H': 1 - x * base + 0.0001,
|
|
'L': 1 - x * base - 0.0001,
|
|
'C': 1 - x * base} for x in range(0, datalen)]}
|
|
if what == 'sine':
|
|
hz = 0.1 # frequency
|
|
return {'BTC_UNITEST':
|
|
[{'T': pair[x]['T'], # Keep old dates
|
|
'V': pair[x]['V'], # Keep old volume
|
|
'BV': pair[x]['BV'], # keep too
|
|
# But replace O,H,L,C
|
|
'O': math.sin(x * hz) / 1000 + base,
|
|
'H': math.sin(x * hz) / 1000 + base + 0.0001,
|
|
'L': math.sin(x * hz) / 1000 + base - 0.0001,
|
|
'C': math.sin(x * hz) / 1000 + base} for x in range(0, datalen)]}
|
|
return data
|
|
|
|
|
|
def simple_backtest(config, contour, num_results) -> None:
|
|
backtesting = _BACKTESTING
|
|
|
|
data = load_data_test(contour)
|
|
processed = backtesting.tickerdata_to_dataframe(data)
|
|
assert isinstance(processed, dict)
|
|
results = backtesting.backtest(
|
|
{
|
|
'stake_amount': config['stake_amount'],
|
|
'processed': processed,
|
|
'max_open_trades': 1,
|
|
'realistic': True
|
|
}
|
|
)
|
|
# results :: <class 'pandas.core.frame.DataFrame'>
|
|
assert len(results) == num_results
|
|
|
|
|
|
def mocked_load_data(datadir, pairs=[], ticker_interval=0, refresh_pairs=False, timerange=None):
|
|
tickerdata = optimize.load_tickerdata_file(datadir, 'BTC_UNITEST', 1, timerange=timerange)
|
|
pairdata = {'BTC_UNITEST': tickerdata}
|
|
return pairdata
|
|
|
|
|
|
# Unit tests
|
|
def test_setup_configuration_without_arguments(mocker, default_conf, caplog) -> None:
|
|
"""
|
|
Test setup_configuration() function
|
|
"""
|
|
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
|
read_data=json.dumps(default_conf)
|
|
))
|
|
|
|
args = [
|
|
'--config', 'config.json',
|
|
'--strategy', 'default_strategy',
|
|
'backtesting'
|
|
]
|
|
|
|
config = setup_configuration(get_args(args))
|
|
assert 'max_open_trades' in config
|
|
assert 'stake_currency' in config
|
|
assert 'stake_amount' in config
|
|
assert 'exchange' in config
|
|
assert 'pair_whitelist' in config['exchange']
|
|
assert 'datadir' in config
|
|
assert tt.log_has(
|
|
'Parameter --datadir detected: {} ...'.format(config['datadir']),
|
|
caplog.record_tuples
|
|
)
|
|
assert 'ticker_interval' in config
|
|
assert not tt.log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
|
|
|
|
assert 'live' not in config
|
|
assert not tt.log_has('Parameter -l/--live detected ...', caplog.record_tuples)
|
|
|
|
assert 'realistic_simulation' not in config
|
|
assert not tt.log_has('Parameter --realistic-simulation detected ...', caplog.record_tuples)
|
|
|
|
assert 'refresh_pairs' not in config
|
|
assert not tt.log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
|
|
|
|
assert 'timerange' not in config
|
|
assert 'export' not in config
|
|
|
|
|
|
def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> None:
|
|
"""
|
|
Test setup_configuration() function
|
|
"""
|
|
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
|
read_data=json.dumps(default_conf)
|
|
))
|
|
|
|
args = [
|
|
'--config', 'config.json',
|
|
'--strategy', 'default_strategy',
|
|
'--datadir', '/foo/bar',
|
|
'backtesting',
|
|
'--ticker-interval', '1',
|
|
'--live',
|
|
'--realistic-simulation',
|
|
'--refresh-pairs-cached',
|
|
'--timerange', ':100',
|
|
'--export', '/bar/foo'
|
|
]
|
|
|
|
config = setup_configuration(get_args(args))
|
|
assert 'max_open_trades' in config
|
|
assert 'stake_currency' in config
|
|
assert 'stake_amount' in config
|
|
assert 'exchange' in config
|
|
assert 'pair_whitelist' in config['exchange']
|
|
assert 'datadir' in config
|
|
assert tt.log_has(
|
|
'Parameter --datadir detected: {} ...'.format(config['datadir']),
|
|
caplog.record_tuples
|
|
)
|
|
assert 'ticker_interval' in config
|
|
assert tt.log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
|
|
assert tt.log_has(
|
|
'Using ticker_interval: 1 ...',
|
|
caplog.record_tuples
|
|
)
|
|
|
|
assert 'live' in config
|
|
assert tt.log_has('Parameter -l/--live detected ...', caplog.record_tuples)
|
|
|
|
assert 'realistic_simulation'in config
|
|
assert tt.log_has('Parameter --realistic-simulation detected ...', caplog.record_tuples)
|
|
assert tt.log_has('Using max_open_trades: 1 ...', caplog.record_tuples)
|
|
|
|
assert 'refresh_pairs'in config
|
|
assert tt.log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
|
|
assert 'timerange' in config
|
|
assert tt.log_has(
|
|
'Parameter --timerange detected: {} ...'.format(config['timerange']),
|
|
caplog.record_tuples
|
|
)
|
|
|
|
assert 'export' in config
|
|
assert tt.log_has(
|
|
'Parameter --export detected: {} ...'.format(config['export']),
|
|
caplog.record_tuples
|
|
)
|
|
|
|
|
|
def test_start(mocker, default_conf, caplog) -> None:
|
|
"""
|
|
Test start() function
|
|
"""
|
|
start_mock = MagicMock()
|
|
mocker.patch('freqtrade.optimize.backtesting.Backtesting.start', start_mock)
|
|
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
|
read_data=json.dumps(default_conf)
|
|
))
|
|
args = [
|
|
'--config', 'config.json',
|
|
'--strategy', 'default_strategy',
|
|
'backtesting'
|
|
]
|
|
args = get_args(args)
|
|
start(args)
|
|
assert tt.log_has(
|
|
'Starting freqtrade in Backtesting mode',
|
|
caplog.record_tuples
|
|
)
|
|
assert start_mock.call_count == 1
|
|
|
|
|
|
def test_backtesting__init__(mocker, default_conf) -> None:
|
|
"""
|
|
Test Backtesting.__init__() method
|
|
"""
|
|
init_mock = MagicMock()
|
|
mocker.patch('freqtrade.optimize.backtesting.Backtesting._init', init_mock)
|
|
|
|
backtesting = Backtesting(default_conf)
|
|
assert backtesting.config == default_conf
|
|
assert backtesting.analyze is None
|
|
assert backtesting.ticker_interval is None
|
|
assert backtesting.tickerdata_to_dataframe is None
|
|
assert backtesting.populate_buy_trend is None
|
|
assert backtesting.populate_sell_trend is None
|
|
assert init_mock.call_count == 1
|
|
|
|
|
|
def test_backtesting_init(default_conf) -> None:
|
|
"""
|
|
Test Backtesting._init() method
|
|
"""
|
|
backtesting = Backtesting(default_conf)
|
|
assert backtesting.config == default_conf
|
|
assert isinstance(backtesting.analyze, Analyze)
|
|
assert backtesting.ticker_interval == 5
|
|
assert callable(backtesting.tickerdata_to_dataframe)
|
|
assert callable(backtesting.populate_buy_trend)
|
|
assert callable(backtesting.populate_sell_trend)
|
|
|
|
|
|
def test_tickerdata_to_dataframe(default_conf) -> None:
|
|
"""
|
|
Test Backtesting.tickerdata_to_dataframe() method
|
|
"""
|
|
|
|
timerange = ((None, 'line'), None, -100)
|
|
tick = optimize.load_tickerdata_file(None, 'BTC_UNITEST', 1, timerange=timerange)
|
|
tickerlist = {'BTC_UNITEST': tick}
|
|
|
|
backtesting = _BACKTESTING
|
|
data = backtesting.tickerdata_to_dataframe(tickerlist)
|
|
assert len(data['BTC_UNITEST']) == 100
|
|
|
|
# Load Analyze to compare the result between Backtesting function and Analyze are the same
|
|
analyze = Analyze(default_conf)
|
|
data2 = analyze.tickerdata_to_dataframe(tickerlist)
|
|
assert data['BTC_UNITEST'].equals(data2['BTC_UNITEST'])
|
|
|
|
|
|
def test_get_timeframe() -> None:
|
|
"""
|
|
Test Backtesting.get_timeframe() method
|
|
"""
|
|
backtesting = _BACKTESTING
|
|
|
|
data = backtesting.tickerdata_to_dataframe(
|
|
optimize.load_data(
|
|
None,
|
|
ticker_interval=1,
|
|
pairs=['BTC_UNITEST']
|
|
)
|
|
)
|
|
min_date, max_date = backtesting.get_timeframe(data)
|
|
assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
|
|
assert max_date.isoformat() == '2017-11-14T22:59:00+00:00'
|
|
|
|
|
|
def test_generate_text_table():
|
|
"""
|
|
Test Backtesting.generate_text_table() method
|
|
"""
|
|
backtesting = _BACKTESTING
|
|
|
|
results = pd.DataFrame(
|
|
{
|
|
'currency': ['BTC_ETH', 'BTC_ETH'],
|
|
'profit_percent': [0.1, 0.2],
|
|
'profit_BTC': [0.2, 0.4],
|
|
'duration': [10, 30],
|
|
'profit': [2, 0],
|
|
'loss': [0, 0]
|
|
}
|
|
)
|
|
|
|
result_str = (
|
|
'pair buy count avg profit % '
|
|
'total profit BTC avg duration profit loss\n'
|
|
'------- ----------- -------------- '
|
|
'------------------ -------------- -------- ------\n'
|
|
'BTC_ETH 2 15.00 '
|
|
'0.60000000 100.0 2 0\n'
|
|
'TOTAL 2 15.00 '
|
|
'0.60000000 100.0 2 0'
|
|
)
|
|
|
|
assert backtesting._generate_text_table(data={'BTC_ETH': {}}, results=results) == result_str
|
|
|
|
|
|
def test_backtesting_start(default_conf, mocker, caplog) -> None:
|
|
"""
|
|
Test Backtesting.start() method
|
|
"""
|
|
def get_timeframe(input1, input2):
|
|
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
|
|
|
|
mocker.patch('freqtrade.freqtradebot.Analyze', MagicMock())
|
|
mocker.patch('freqtrade.optimize.load_data', mocked_load_data)
|
|
mocker.patch('freqtrade.exchange.get_ticker_history')
|
|
mocker.patch.multiple(
|
|
'freqtrade.optimize.backtesting.Backtesting',
|
|
backtest=MagicMock(),
|
|
_generate_text_table=MagicMock(return_value='1'),
|
|
get_timeframe=get_timeframe,
|
|
)
|
|
|
|
conf = deepcopy(default_conf)
|
|
conf['exchange']['pair_whitelist'] = ['BTC_UNITEST']
|
|
conf['ticker_interval'] = 1
|
|
conf['live'] = False
|
|
conf['datadir'] = None
|
|
conf['export'] = None
|
|
conf['timerange'] = '-100'
|
|
|
|
backtesting = Backtesting(conf)
|
|
backtesting.start()
|
|
# check the logs, that will contain the backtest result
|
|
exists = [
|
|
'Using local backtesting data (using whitelist in given config) ...',
|
|
'Using stake_currency: BTC ...',
|
|
'Using stake_amount: 0.001 ...',
|
|
'Measuring data from 2017-11-14T21:17:00+00:00 '
|
|
'up to 2017-11-14T22:59:00+00:00 (0 days)..'
|
|
]
|
|
for line in exists:
|
|
assert tt.log_has(line, caplog.record_tuples)
|
|
|
|
|
|
def test_backtest(default_conf) -> None:
|
|
"""
|
|
Test Backtesting.backtest() method
|
|
"""
|
|
backtesting = _BACKTESTING
|
|
|
|
data = optimize.load_data(None, ticker_interval=5, pairs=['BTC_ETH'])
|
|
data = trim_dictlist(data, -200)
|
|
results = backtesting.backtest(
|
|
{
|
|
'stake_amount': default_conf['stake_amount'],
|
|
'processed': backtesting.tickerdata_to_dataframe(data),
|
|
'max_open_trades': 10,
|
|
'realistic': True
|
|
}
|
|
)
|
|
assert not results.empty
|
|
|
|
|
|
def test_backtest_1min_ticker_interval(default_conf) -> None:
|
|
"""
|
|
Test Backtesting.backtest() method with 1 min ticker
|
|
"""
|
|
backtesting = _BACKTESTING
|
|
|
|
# Run a backtesting for an exiting 5min ticker_interval
|
|
data = optimize.load_data(None, ticker_interval=1, pairs=['BTC_UNITEST'])
|
|
data = trim_dictlist(data, -200)
|
|
results = backtesting.backtest(
|
|
{
|
|
'stake_amount': default_conf['stake_amount'],
|
|
'processed': backtesting.tickerdata_to_dataframe(data),
|
|
'max_open_trades': 1,
|
|
'realistic': True
|
|
}
|
|
)
|
|
assert not results.empty
|
|
|
|
|
|
def test_processed() -> None:
|
|
"""
|
|
Test Backtesting.backtest() method with offline data
|
|
"""
|
|
backtesting = _BACKTESTING
|
|
|
|
dict_of_tickerrows = load_data_test('raise')
|
|
dataframes = backtesting.tickerdata_to_dataframe(dict_of_tickerrows)
|
|
dataframe = dataframes['BTC_UNITEST']
|
|
cols = dataframe.columns
|
|
# assert the dataframe got some of the indicator columns
|
|
for col in ['close', 'high', 'low', 'open', 'date',
|
|
'ema50', 'ao', 'macd', 'plus_dm']:
|
|
assert col in cols
|
|
|
|
|
|
def test_backtest_pricecontours(default_conf) -> None:
|
|
tests = [['raise', 17], ['lower', 0], ['sine', 17]]
|
|
for [contour, numres] in tests:
|
|
simple_backtest(default_conf, contour, numres)
|