105 lines
2.9 KiB
Python
Executable File
105 lines
2.9 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
"""
|
|
Script to display profits
|
|
|
|
Use `python plot_profit.py --help` to display the command line arguments
|
|
"""
|
|
import logging
|
|
import sys
|
|
from typing import Any, Dict, List
|
|
|
|
import pandas as pd
|
|
import plotly.graph_objs as go
|
|
from plotly import tools
|
|
|
|
from freqtrade.arguments import ARGS_PLOT_PROFIT, Arguments
|
|
from freqtrade.data.btanalysis import create_cum_profit, combine_tickers_with_mean
|
|
from freqtrade.optimize import setup_configuration
|
|
from freqtrade.plot.plotting import FTPlots, store_plot_file
|
|
from freqtrade.state import RunMode
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def plot_profit(config: Dict[str, Any]) -> None:
|
|
"""
|
|
Plots the total profit for all pairs.
|
|
Note, the profit calculation isn't realistic.
|
|
But should be somewhat proportional, and therefor useful
|
|
in helping out to find a good algorithm.
|
|
"""
|
|
plot = FTPlots(config)
|
|
|
|
trades = plot.trades[plot.trades['pair'].isin(plot.pairs)]
|
|
|
|
# Create an average close price of all the pairs that were involved.
|
|
# this could be useful to gauge the overall market trend
|
|
|
|
# Combine close-values for all pairs, rename columns to "pair"
|
|
df_comb = combine_tickers_with_mean(plot.tickers, "close")
|
|
|
|
# Add combined cumulative profit
|
|
df_comb = create_cum_profit(df_comb, trades, 'cum_profit')
|
|
|
|
# Plot the pairs average close prices, and total profit growth
|
|
avgclose = go.Scattergl(
|
|
x=df_comb.index,
|
|
y=df_comb['mean'],
|
|
name='Avg close price',
|
|
)
|
|
|
|
profit = go.Scattergl(
|
|
x=df_comb.index,
|
|
y=df_comb['cum_profit'],
|
|
name='Profit',
|
|
)
|
|
|
|
fig = tools.make_subplots(rows=3, cols=1, shared_xaxes=True, row_width=[1, 1, 1])
|
|
|
|
fig.append_trace(avgclose, 1, 1)
|
|
fig.append_trace(profit, 2, 1)
|
|
|
|
for pair in plot.pairs:
|
|
profit_col = f'cum_profit_{pair}'
|
|
df_comb = create_cum_profit(df_comb, trades[trades['pair'] == pair], profit_col)
|
|
|
|
pair_profit = go.Scattergl(
|
|
x=df_comb.index,
|
|
y=df_comb[profit_col],
|
|
name=f"Profit {pair}",
|
|
)
|
|
fig.append_trace(pair_profit, 3, 1)
|
|
|
|
store_plot_file(fig, filename='freqtrade-profit-plot.html', auto_open=True)
|
|
|
|
|
|
def plot_parse_args(args: List[str]) -> Dict[str, Any]:
|
|
"""
|
|
Parse args passed to the script
|
|
:param args: Cli arguments
|
|
:return: args: Array with all arguments
|
|
"""
|
|
arguments = Arguments(args, 'Graph profits')
|
|
arguments.build_args(optionlist=ARGS_PLOT_PROFIT)
|
|
|
|
parsed_args = arguments.parse_args()
|
|
|
|
# Load the configuration
|
|
config = setup_configuration(parsed_args, RunMode.OTHER)
|
|
return config
|
|
|
|
|
|
def main(sysargv: List[str]) -> None:
|
|
"""
|
|
This function will initiate the bot and start the trading loop.
|
|
:return: None
|
|
"""
|
|
logger.info('Starting Plot Dataframe')
|
|
plot_profit(
|
|
plot_parse_args(sysargv)
|
|
)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main(sys.argv[1:])
|