stable/freqtrade/optimize/space/decimalspace.py
Simon Ebner df033d92ef Improve performance of decimalspace.py
decimalspace.py is heavily used in the hyperoptimization. The following
benchmark code runs an optimization which is taken from optimizing a
real strategy (wtc).
The optimized version takes on my machine approx. 11/12s compared to the
original 32s. Results are equivalent in both cases.

```
import freqtrade.optimize.space
import numpy as np
import skopt
import timeit

def init():
    Decimal = freqtrade.optimize.space.decimalspace.SKDecimal
    Integer = skopt.space.space.Integer
    dimensions = [Decimal(low=-1.0,
        high=1.0,
        decimals=4,
        prior='uniform',
        transform='identity')] * 20

    return skopt.Optimizer(
        dimensions,
        base_estimator="ET",
        acq_optimizer="auto",
        n_initial_points=5,
        acq_optimizer_kwargs={'n_jobs': 96},
        random_state=0,
        model_queue_size=10,
    )

def test():
    opt = init()
    actual = opt.ask(n_points=2)
    expected = [[
        0.7515, -0.4723, -0.6941, -0.7988, 0.0448, 0.8605, -0.108, 0.5399,
        0.763, -0.2948, 0.8345, -0.7683, 0.7077, -0.2478, -0.333, 0.8575,
        0.6108, 0.4514, 0.5982, 0.3506
    ], [
        0.5563, 0.7386, -0.6407, 0.9073, -0.5211, -0.8167, -0.3771,
        -0.0318, 0.2861, 0.1176, 0.0943, -0.6077, -0.9317, -0.5372,
        -0.4934, -0.3637, -0.8035, -0.8627, -0.5399, 0.6036
    ]]

    absdiff = np.max(np.abs(np.asarray(expected) - np.asarray(actual)))
    assert absdiff < 1e-5

def time():
    opt = init()
    print('dt', timeit.timeit("opt.ask(n_points=20)", globals=locals()))

if __name__ == "__main__":
    test()
    time()
```
2021-10-24 18:14:24 +02:00

38 lines
1.4 KiB
Python

import numpy as np
from skopt.space import Integer
class SKDecimal(Integer):
def __init__(self, low, high, decimals=3, prior="uniform", base=10, transform=None,
name=None, dtype=np.int64):
self.decimals = decimals
self.pow_dot_one = pow(0.1, self.decimals)
self.pow_ten = pow(10, self.decimals)
_low = int(low * self.pow_ten)
_high = int(high * self.pow_ten)
# trunc to precision to avoid points out of space
self.low_orig = round(_low * self.pow_dot_one, self.decimals)
self.high_orig = round(_high * self.pow_dot_one, self.decimals)
super().__init__(_low, _high, prior, base, transform, name, dtype)
def __repr__(self):
return "Decimal(low={}, high={}, decimals={}, prior='{}', transform='{}')".format(
self.low_orig, self.high_orig, self.decimals, self.prior, self.transform_)
def __contains__(self, point):
if isinstance(point, list):
point = np.array(point)
return self.low_orig <= point <= self.high_orig
def transform(self, Xt):
return super().transform([int(v * self.pow_ten) for v in Xt])
def inverse_transform(self, Xt):
res = super().inverse_transform(Xt)
# equivalent to [round(x * pow(0.1, self.decimals), self.decimals) for x in res]
return [int(v) / self.pow_ten for v in res]