stable/freqtrade/tests/test_backtesting.py

150 lines
5.1 KiB
Python

# pragma pylint: disable=missing-docstring
import json
import logging
import os
from typing import Tuple, Dict
import arrow
import pytest
from arrow import Arrow
from pandas import DataFrame
from tabulate import tabulate
from freqtrade import exchange
from freqtrade.analyze import parse_ticker_dataframe, populate_indicators, \
populate_buy_trend, populate_sell_trend
from freqtrade.exchange import Bittrex
from freqtrade.main import min_roi_reached
from freqtrade.persistence import Trade
logger = logging.getLogger(__name__)
def format_results(results: DataFrame):
return 'Made {} buys. Average profit {:.2f}%. ' \
'Total profit was {:.3f}. Average duration {:.1f} mins.'.format(
len(results.index),
results.profit.mean() * 100.0,
results.profit.sum(),
results.duration.mean() * 5,
)
def print_pair_results(pair: str, results: DataFrame):
print('For currency {}:'.format(pair))
print(format_results(results[results.currency == pair]))
def preprocess(backdata) -> Dict[str, DataFrame]:
processed = {}
for pair, pair_data in backdata.items():
processed[pair] = populate_indicators(parse_ticker_dataframe(pair_data))
return processed
def get_timeframe(data: Dict[str, Dict]) -> Tuple[Arrow, Arrow]:
"""
Get the maximum timeframe for the given backtest data
:param data: dictionary with backtesting data
:return: tuple containing min_date, max_date
"""
min_date, max_date = None, None
for values in data.values():
values = sorted(values, key=lambda d: arrow.get(d['T']))
if not min_date or values[0]['T'] < min_date:
min_date = values[0]['T']
if not max_date or values[-1]['T'] > max_date:
max_date = values[-1]['T']
return arrow.get(min_date), arrow.get(max_date)
def generate_text_table(data: Dict[str, Dict], results: DataFrame) -> str:
"""
Generates and returns a text table for the given backtest data and the results dataframe
:return: pretty printed table with tabulate as str
"""
tabular_data = []
headers = ['pair', 'buy count', 'avg profit', 'total profit', 'avg duration']
for pair in data:
result = results[results.currency == pair]
tabular_data.append([
pair,
len(result.index),
'{:.2f}%'.format(result.profit.mean() * 100.0),
'{:.8f}'.format(result.profit.sum()),
'{:.2f}'.format(result.duration.mean() * 5),
])
# Append Total
tabular_data.append([
'TOTAL',
len(results.index),
'{:.2f}%'.format(results.profit.mean() * 100.0),
'{:.8f}'.format(results.profit.sum()),
'{:.2f}'.format(results.duration.mean() * 5),
])
return tabulate(tabular_data, headers=headers)
def backtest(backtest_conf, processed, mocker):
trades = []
exchange._API = Bittrex({'key': '', 'secret': ''})
mocker.patch.dict('freqtrade.main._CONF', backtest_conf)
for pair, pair_data in processed.items():
pair_data['buy'] = 0
pair_data['sell'] = 0
ticker = populate_sell_trend(populate_buy_trend(pair_data))
# for each buy point
for row in ticker[ticker.buy == 1].itertuples(index=True):
trade = Trade(
open_rate=row.close,
open_date=row.date,
amount=1,
fee=exchange.get_fee() * 2
)
# calculate win/lose forwards from buy point
for row2 in ticker[row.Index:].itertuples(index=True):
if min_roi_reached(trade, row2.close, row2.date) or row2.sell == 1:
current_profit = trade.calc_profit(row2.close)
trades.append((pair, current_profit, row2.Index - row.Index))
break
labels = ['currency', 'profit', 'duration']
return DataFrame.from_records(trades, columns=labels)
@pytest.mark.skipif(not os.environ.get('BACKTEST'), reason="BACKTEST not set")
def test_backtest(backtest_conf, backdata, mocker):
print('')
config = None
conf_path = os.environ.get('BACKTEST_CONFIG')
if conf_path:
print('Using config: {} ...'.format(conf_path))
with open(conf_path, 'r') as conf_file:
config = json.load(conf_file)
ticker_interval = int(os.environ.get('BACKTEST_TICKER_INTERVAL') or 5)
print('Using ticker_interval: {} ...'.format(ticker_interval))
livedata = {}
if os.environ.get('BACKTEST_LIVE'):
print('Downloading data for all pairs in whitelist ...')
exchange._API = Bittrex({'key': '', 'secret': ''})
for pair in config['exchange']['pair_whitelist']:
livedata[pair] = exchange.get_ticker_history(pair, ticker_interval)
config = config or backtest_conf
data = livedata or backdata
min_date, max_date = get_timeframe(data)
print('Measuring data from {} up to {} ...'.format(
min_date.isoformat(), max_date.isoformat()
))
results = backtest(config, preprocess(data), mocker)
print('====================== BACKTESTING REPORT ======================================\n')
print(generate_text_table(data, results))