291 lines
11 KiB
Python
291 lines
11 KiB
Python
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
|
|
|
# --- Do not remove these libs ---
|
|
from functools import reduce
|
|
from typing import Any, Callable, Dict, List
|
|
|
|
import numpy # noqa
|
|
import pandas # noqa
|
|
from pandas import DataFrame
|
|
from skopt.space import Categorical, Dimension, Integer, Real # noqa
|
|
|
|
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
|
|
|
# --------------------------------
|
|
# Add your lib to import here
|
|
import talib.abstract as ta # noqa
|
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
|
|
|
|
|
class Examplestrategy5opt(IHyperOpt):
|
|
@staticmethod
|
|
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Adds several different TA indicators to the given DataFrame
|
|
Performance Note: For the best performance be frugal on the number of indicators
|
|
you are using. Let uncomment only the indicator you are using in your strategies
|
|
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
|
"""
|
|
|
|
# MACD
|
|
macd = ta.MACD(dataframe)
|
|
dataframe['macd'] = macd['macd']
|
|
dataframe['macdsignal'] = macd['macdsignal']
|
|
|
|
# Minus Directional Indicator / Movement
|
|
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
|
|
# RSI
|
|
dataframe['rsi'] = ta.RSI(dataframe)
|
|
|
|
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
|
rsi = 0.1 * (dataframe['rsi'] - 50)
|
|
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
|
|
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
|
|
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
|
|
|
# Stoch fast
|
|
stoch_fast = ta.STOCHF(dataframe)
|
|
dataframe['fastd'] = stoch_fast['fastd']
|
|
dataframe['fastk'] = stoch_fast['fastk']
|
|
|
|
# Overlap Studies
|
|
# ------------------------------------
|
|
|
|
# SAR Parabol
|
|
dataframe['sar'] = ta.SAR(dataframe)
|
|
|
|
# SMA - Simple Moving Average
|
|
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
|
|
|
return dataframe
|
|
|
|
@staticmethod
|
|
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
"""
|
|
Define the buy strategy parameters to be used by Hyperopt.
|
|
"""
|
|
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Buy strategy Hyperopt will build and use.
|
|
"""
|
|
conditions = []
|
|
|
|
# GUARDS AND TRENDS
|
|
if params.get('fastd-enabled'):
|
|
conditions.append(dataframe['fastd'] > params['fastd-value'])
|
|
|
|
if params.get('rsi-enabled'):
|
|
conditions.append(dataframe['rsi'] > params['rsi-value'])
|
|
|
|
if params.get('close-enabled'):
|
|
conditions.append(dataframe['close'] > params['close-value'])
|
|
|
|
if params.get('fisher_rsi_norma-enabled'):
|
|
conditions.append(dataframe['fisher_rsi_norma'] < params['fisher_rsi_norma-value'])
|
|
|
|
# TRIGGERS
|
|
if 'trigger' in params:
|
|
if params['trigger'] == 'sma':
|
|
conditions.append(dataframe['close'] < dataframe['sma'])
|
|
if params['trigger'] == 'fast':
|
|
conditions.append(dataframe['fastk'] < dataframe['fastd'])
|
|
if params['trigger'] == 'volume':
|
|
conditions.append(dataframe['volume'] >
|
|
dataframe['volume'].rolling(200).mean() * 4)
|
|
|
|
# Check that the candle had volume
|
|
conditions.append(dataframe['volume'] > 0)
|
|
|
|
if conditions:
|
|
dataframe.loc[
|
|
reduce(lambda x, y: x & y, conditions),
|
|
'buy'] = 1
|
|
|
|
return dataframe
|
|
|
|
return populate_buy_trend
|
|
|
|
@staticmethod
|
|
def indicator_space() -> List[Dimension]:
|
|
"""
|
|
Define your Hyperopt space for searching buy strategy parameters.
|
|
"""
|
|
return [
|
|
Integer(0, 50, name='rsi-value'),
|
|
Integer(0.0, 100.0, name='fisher_rsi_norma-value'),
|
|
Integer(0, 50, name='fastd-value'),
|
|
Integer(0.00000000, 0.00000200, name='close-value'),
|
|
Categorical([True, False], name='rsi-enabled'),
|
|
Categorical([True, False], name='fastd-enabled'),
|
|
Categorical([True, False], name='fisher_rsi_norma-enabled'),
|
|
Categorical([True, False], name='close-enabled'),
|
|
Categorical(['fast', 'sma', 'volume'], name='trigger')
|
|
]
|
|
|
|
@staticmethod
|
|
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
"""
|
|
Define the sell strategy parameters to be used by Hyperopt.
|
|
"""
|
|
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Sell strategy Hyperopt will build and use.
|
|
"""
|
|
conditions = []
|
|
|
|
# GUARDS AND TRENDS
|
|
if params.get('sell-enabled'):
|
|
conditions.append(
|
|
(
|
|
(qtpylib.crossed_above(dataframe['rsi'], dataframe['sell-rsi-value'])) &
|
|
(dataframe['macd'] < dataframe['sell-macd-value']) &
|
|
(dataframe['minus_di'] > dataframe['sell-minus_di-value'])
|
|
) |
|
|
(
|
|
(dataframe['sar'] > dataframe['close']) &
|
|
(dataframe['fisher_rsi'] > dataframe['sell-fisher_rsi-value'])
|
|
)
|
|
)
|
|
|
|
# Check that the candle had volume
|
|
conditions.append(dataframe['volume'] > 0)
|
|
|
|
if conditions:
|
|
dataframe.loc[
|
|
reduce(lambda x, y: x & y, conditions),
|
|
'sell'] = 1
|
|
|
|
return dataframe
|
|
|
|
return populate_sell_trend
|
|
|
|
@staticmethod
|
|
def sell_indicator_space() -> List[Dimension]:
|
|
"""
|
|
Define your Hyperopt space for searching sell strategy parameters.
|
|
"""
|
|
return [
|
|
Integer(25, 75, name='sell-rsi-value'),
|
|
Integer(-50, 50, name='sell-macd-value'),
|
|
Integer(-50, 50, name='sell-minus_di-value'),
|
|
Categorical([True, False], name='sell-enabled'),
|
|
]
|
|
|
|
@staticmethod
|
|
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
|
"""
|
|
Generate the ROI table that will be used by Hyperopt
|
|
This implementation generates the default legacy Freqtrade ROI tables.
|
|
Change it if you need different number of steps in the generated
|
|
ROI tables or other structure of the ROI tables.
|
|
Please keep it aligned with parameters in the 'roi' optimization
|
|
hyperspace defined by the roi_space method.
|
|
"""
|
|
roi_table = {}
|
|
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
|
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
|
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
|
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
|
|
|
return roi_table
|
|
|
|
@staticmethod
|
|
def roi_space() -> List[Dimension]:
|
|
"""
|
|
Values to search for each ROI steps
|
|
Override it if you need some different ranges for the parameters in the
|
|
'roi' optimization hyperspace.
|
|
Please keep it aligned with the implementation of the
|
|
generate_roi_table method.
|
|
"""
|
|
return [
|
|
Integer(10, 120, name='roi_t1'),
|
|
Integer(10, 60, name='roi_t2'),
|
|
Integer(10, 40, name='roi_t3'),
|
|
Real(0.01, 0.04, name='roi_p1'),
|
|
Real(0.01, 0.07, name='roi_p2'),
|
|
Real(0.01, 0.20, name='roi_p3'),
|
|
]
|
|
|
|
@staticmethod
|
|
def stoploss_space() -> List[Dimension]:
|
|
"""
|
|
Stoploss Value to search
|
|
Override it if you need some different range for the parameter in the
|
|
'stoploss' optimization hyperspace.
|
|
"""
|
|
return [
|
|
Real(-0.35, -0.02, name='stoploss'),
|
|
]
|
|
|
|
@staticmethod
|
|
def trailing_space() -> List[Dimension]:
|
|
"""
|
|
Create a trailing stoploss space.
|
|
You may override it in your custom Hyperopt class.
|
|
"""
|
|
return [
|
|
# It was decided to always set trailing_stop is to True if the 'trailing' hyperspace
|
|
# is used. Otherwise hyperopt will vary other parameters that won't have effect if
|
|
# trailing_stop is set False.
|
|
# This parameter is included into the hyperspace dimensions rather than assigning
|
|
# it explicitly in the code in order to have it printed in the results along with
|
|
# other 'trailing' hyperspace parameters.
|
|
Categorical([True], name='trailing_stop'),
|
|
|
|
Real(0.01, 0.35, name='trailing_stop_positive'),
|
|
|
|
# 'trailing_stop_positive_offset' should be greater than 'trailing_stop_positive',
|
|
# so this intermediate parameter is used as the value of the difference between
|
|
# them. The value of the 'trailing_stop_positive_offset' is constructed in the
|
|
# generate_trailing_params() method.
|
|
# This is similar to the hyperspace dimensions used for constructing the ROI tables.
|
|
Real(0.001, 0.1, name='trailing_stop_positive_offset_p1'),
|
|
|
|
Categorical([True, False], name='trailing_only_offset_is_reached'),
|
|
]
|
|
|
|
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Based on TA indicators, populates the buy signal for the given dataframe
|
|
:param dataframe: DataFrame
|
|
:return: DataFrame with buy column
|
|
"""
|
|
dataframe.loc[
|
|
# Prod
|
|
(
|
|
(dataframe['close'] > 0.00000200) &
|
|
(dataframe['volume'] > dataframe['volume'].rolling(200).mean() * 4) &
|
|
(dataframe['close'] < dataframe['sma']) &
|
|
(dataframe['fastd'] > dataframe['fastk']) &
|
|
(dataframe['rsi'] > 0) &
|
|
(dataframe['fastd'] > 0) &
|
|
# (dataframe['fisher_rsi'] < -0.94)
|
|
(dataframe['fisher_rsi_norma'] < 38.900000000000006)
|
|
),
|
|
'buy'] = 1
|
|
|
|
return dataframe
|
|
|
|
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Based on TA indicators, populates the sell signal for the given dataframe
|
|
:param dataframe: DataFrame
|
|
:return: DataFrame with buy column
|
|
"""
|
|
dataframe.loc[
|
|
# Prod
|
|
(
|
|
(qtpylib.crossed_above(dataframe['rsi'], 50)) &
|
|
(dataframe['macd'] < 0) &
|
|
(dataframe['minus_di'] > 0)
|
|
) |
|
|
(
|
|
(dataframe['sar'] > dataframe['close']) &
|
|
(dataframe['fisher_rsi'] > 0.3)
|
|
),
|
|
|
|
'sell'] = 1
|
|
return dataframe
|