96 lines
3.4 KiB
Python
96 lines
3.4 KiB
Python
import logging
|
|
|
|
from typing import Any, Dict, Tuple
|
|
import numpy.typing as npt
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import torch
|
|
from pandas import DataFrame
|
|
from torch.nn import functional as F
|
|
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
|
|
|
from freqtrade.freqai.base_models.BasePyTorchModel import BasePyTorchModel
|
|
from freqtrade.freqai.base_models.PyTorchModelTrainer import PyTorchModelTrainer
|
|
from freqtrade.freqai.prediction_models.PyTorchMLPModel import PyTorchMLPModel
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class PyTorchClassifierMultiTarget(BasePyTorchModel):
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
# todo move to config
|
|
self.labels = ['0.0', '1.0', '2.0']
|
|
self.n_hidden = 1024
|
|
self.max_iters = 100
|
|
self.batch_size = 64
|
|
self.learning_rate = 3e-4
|
|
self.eval_iters = 10
|
|
|
|
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
|
"""
|
|
User sets up the training and test data to fit their desired model here
|
|
:param tensor_dictionary: the dictionary constructed by DataHandler to hold
|
|
all the training and test data/labels.
|
|
"""
|
|
n_features = data_dictionary['train_features'].shape[-1]
|
|
|
|
model = PyTorchMLPModel(
|
|
input_dim=n_features,
|
|
hidden_dim=self.n_hidden,
|
|
output_dim=len(self.labels)
|
|
)
|
|
model.to(self.device)
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
|
|
criterion = torch.nn.CrossEntropyLoss()
|
|
init_model = self.get_init_model(dk.pair)
|
|
trainer = PyTorchModelTrainer(
|
|
model=model,
|
|
optimizer=optimizer,
|
|
criterion=criterion,
|
|
device=self.device,
|
|
batch_size=self.batch_size,
|
|
max_iters=self.max_iters,
|
|
eval_iters=self.eval_iters,
|
|
init_model=init_model
|
|
)
|
|
trainer.fit(data_dictionary)
|
|
return trainer
|
|
|
|
def predict(
|
|
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
|
|
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
|
"""
|
|
Filter the prediction features data and predict with it.
|
|
:param unfiltered_df: Full dataframe for the current backtest period.
|
|
:return:
|
|
:pred_df: dataframe containing the predictions
|
|
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
|
data (NaNs) or felt uncertain about data (PCA and DI index)
|
|
"""
|
|
|
|
dk.find_features(unfiltered_df)
|
|
filtered_df, _ = dk.filter_features(
|
|
unfiltered_df, dk.training_features_list, training_filter=False
|
|
)
|
|
filtered_df = dk.normalize_data_from_metadata(filtered_df)
|
|
dk.data_dictionary["prediction_features"] = filtered_df
|
|
|
|
self.data_cleaning_predict(dk)
|
|
dk.data_dictionary["prediction_features"] = torch.tensor(
|
|
dk.data_dictionary["prediction_features"].values
|
|
).float().to(self.device)
|
|
|
|
logits = self.model.model(dk.data_dictionary["prediction_features"])
|
|
probs = F.softmax(logits, dim=-1)
|
|
label_ints = torch.argmax(probs, dim=-1)
|
|
|
|
pred_df_prob = DataFrame(probs.detach().numpy(), columns=self.labels)
|
|
pred_df = DataFrame(label_ints, columns=dk.label_list).astype(float).astype(str)
|
|
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
|
|
return (pred_df, dk.do_predict)
|