stable/freqtrade/strategy/strategy.py
2018-02-28 23:09:43 +11:00

200 lines
6.9 KiB
Python

# pragma pylint: disable=attribute-defined-outside-init
"""
This module load custom strategies
"""
import os
import sys
import logging
import importlib
from collections import OrderedDict
from typing import Dict, Any, Callable
from pandas import DataFrame
from freqtrade.strategy.interface import IStrategy
sys.path.insert(0, r'../../user_data/strategies')
class Strategy(object):
"""
This class contains all the logic to load custom strategy class
"""
__instance = None
DEFAULT_STRATEGY = 'default_strategy'
def __new__(cls) -> object:
"""
Used to create the Singleton
:return: Strategy object
"""
if Strategy.__instance is None:
Strategy.__instance = object.__new__(cls)
return Strategy.__instance
def init(self, config: dict) -> None:
"""
Load the custom class from config parameter
:param config:
:return:
"""
self.logger = logging.getLogger(__name__)
# Verify the strategy is in the configuration, otherwise fallback to the default strategy
if 'strategy' in config:
strategy = config['strategy']
else:
strategy = self.DEFAULT_STRATEGY
# Load the strategy
self._load_strategy(strategy)
# Set attributes
# Check if we need to override configuration
if 'minimal_roi' in config:
self.custom_strategy.minimal_roi = config['minimal_roi']
self.logger.info("Override strategy \'minimal_roi\' with value in config file.")
if 'stoploss' in config:
self.custom_strategy.stoploss = config['stoploss']
self.logger.info(
"Override strategy \'stoploss\' with value in config file: %s.", config['stoploss']
)
if 'ticker_interval' in config:
self.custom_strategy.ticker_interval = config['ticker_interval']
self.logger.info(
"Override strategy \'ticker_interval\' with value in config file: %s.",
config['ticker_interval']
)
# Minimal ROI designed for the strategy
self.minimal_roi = OrderedDict(sorted(
{int(key): value for (key, value) in self.custom_strategy.minimal_roi.items()}.items(),
key=lambda tuple: tuple[0])) # sort after converting to number
# Optimal stoploss designed for the strategy
self.stoploss = float(self.custom_strategy.stoploss)
self.ticker_interval = self.custom_strategy.ticker_interval
def _load_strategy(self, strategy_name: str) -> None:
"""
Search and load the custom strategy. If no strategy found, fallback on the default strategy
Set the object into self.custom_strategy
:param strategy_name: name of the module to import
:return: None
"""
try:
# Start by sanitizing the file name (remove any extensions)
strategy_name = self._sanitize_module_name(filename=strategy_name)
# Search where can be the strategy file
path = self._search_strategy(filename=strategy_name)
# Load the strategy
self.custom_strategy = self._load_class(path + strategy_name)
# Fallback to the default strategy
except (ImportError, TypeError) as error:
self.logger.error(
"Impossible to load Strategy 'user_data/strategies/%s.py'. This file does not exist"
" or contains Python code errors",
strategy_name
)
self.logger.error(
"The error is:\n%s.",
error
)
def _load_class(self, filename: str) -> IStrategy:
"""
Import a strategy as a module
:param filename: path to the strategy (path from freqtrade/strategy/)
:return: return the strategy class
"""
module = importlib.import_module(filename, __package__)
custom_strategy = getattr(module, module.class_name)
self.logger.info("Load strategy class: %s (%s.py)", module.class_name, filename)
return custom_strategy()
@staticmethod
def _sanitize_module_name(filename: str) -> str:
"""
Remove any extension from filename
:param filename: filename to sanatize
:return: return the filename without extensions
"""
filename = os.path.basename(filename)
filename = os.path.splitext(filename)[0]
return filename
@staticmethod
def _search_strategy(filename: str) -> str:
"""
Search for the Strategy file in different folder
1. search into the user_data/strategies folder
2. search into the freqtrade/strategy folder
3. if nothing found, return None
:param strategy_name: module name to search
:return: module path where is the strategy
"""
pwd = os.path.dirname(os.path.realpath(__file__)) + '/'
user_data = os.path.join(pwd, '..', '..', 'user_data', 'strategies', filename + '.py')
strategy_folder = os.path.join(pwd, filename + '.py')
path = None
if os.path.isfile(user_data):
path = 'user_data.strategies.'
elif os.path.isfile(strategy_folder):
path = '.'
return path
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
"""
Populate indicators that will be used in the Buy and Sell strategy
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:return: a Dataframe with all mandatory indicators for the strategies
"""
return self.custom_strategy.populate_indicators(dataframe)
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
:return:
"""
return self.custom_strategy.populate_buy_trend(dataframe)
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
return self.custom_strategy.populate_sell_trend(dataframe)
def indicator_space(self) -> Dict[str, Any]:
"""
Define your Hyperopt space for searching strategy parameters
"""
return self.custom_strategy.indicator_space()
def buy_strategy_generator(self, params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by hyperopt
"""
return self.custom_strategy.buy_strategy_generator(params)
def roi_space(self) -> Dict[str, Any]:
return self.custom_strategy.roi_space()
def stoploss_space(self) -> Dict[str, Any]:
return self.custom_strategy.stoploss_space()