stable/freqtrade/optimize/hyperopt.py
2018-02-28 23:09:43 +11:00

289 lines
9.3 KiB
Python

# pragma pylint: disable=missing-docstring,W0212,W0603
import json
import logging
import os
import pickle
import signal
import sys
from functools import reduce
from math import exp
from operator import itemgetter
from typing import Dict, Any, Callable
import numpy
import talib.abstract as ta
from hyperopt import STATUS_FAIL, STATUS_OK, Trials, fmin, hp, space_eval, tpe
from hyperopt.mongoexp import MongoTrials
from pandas import DataFrame
import freqtrade.vendor.qtpylib.indicators as qtpylib
# Monkey patch config
from freqtrade import main # noqa; noqa
from freqtrade import exchange, misc, optimize
from freqtrade.exchange import Bittrex
from freqtrade.misc import load_config
from freqtrade.optimize import backtesting
from freqtrade.optimize.backtesting import backtest
from freqtrade.strategy.strategy import Strategy
from user_data.hyperopt_conf import hyperopt_optimize_conf
# Remove noisy log messages
logging.getLogger('hyperopt.mongoexp').setLevel(logging.WARNING)
logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
# set TARGET_TRADES to suit your number concurrent trades so its realistic to the number of days
TARGET_TRADES = 600
TOTAL_TRIES = 0
_CURRENT_TRIES = 0
CURRENT_BEST_LOSS = 100
# max average trade duration in minutes
# if eval ends with higher value, we consider it a failed eval
MAX_ACCEPTED_TRADE_DURATION = 300
# this is expexted avg profit * expected trade count
# for example 3.5%, 1100 trades, EXPECTED_MAX_PROFIT = 3.85
# check that the reported Σ% values do not exceed this!
EXPECTED_MAX_PROFIT = 3.0
# Configuration and data used by hyperopt
PROCESSED = None # optimize.preprocess(optimize.load_data())
OPTIMIZE_CONFIG = hyperopt_optimize_conf()
# Hyperopt Trials
TRIALS_FILE = os.path.join('user_data', 'hyperopt_trials.pickle')
TRIALS = Trials()
main._CONF = OPTIMIZE_CONFIG
def save_trials(trials, trials_path=TRIALS_FILE):
"""Save hyperopt trials to file"""
logger.info('Saving Trials to \'{}\''.format(trials_path))
pickle.dump(trials, open(trials_path, 'wb'))
def read_trials(trials_path=TRIALS_FILE):
"""Read hyperopt trials file"""
logger.info('Reading Trials from \'{}\''.format(trials_path))
trials = pickle.load(open(trials_path, 'rb'))
os.remove(trials_path)
return trials
def log_trials_result(trials):
vals = json.dumps(trials.best_trial['misc']['vals'], indent=4)
results = trials.best_trial['result']['result']
logger.info('Best result:\n%s\nwith values:\n%s', results, vals)
def log_results(results):
""" log results if it is better than any previous evaluation """
global CURRENT_BEST_LOSS
if results['loss'] < CURRENT_BEST_LOSS:
CURRENT_BEST_LOSS = results['loss']
logger.info('{:5d}/{}: {}. Loss {:.5f}'.format(
results['current_tries'],
results['total_tries'],
results['result'],
results['loss']))
else:
print('.', end='')
sys.stdout.flush()
def calculate_loss(total_profit: float, trade_count: int, trade_duration: float):
""" objective function, returns smaller number for more optimal results """
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
duration_loss = 0.4 * min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1)
return trade_loss + profit_loss + duration_loss
def generate_roi_table(params) -> Dict[int, float]:
roi_table = {}
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
return roi_table
def has_space(spaces, space):
if space in spaces or 'all' in spaces:
return True
return False
def hyperopt_space(selected_spaces: str, strategy) -> Dict[str, Any]:
spaces = {}
if has_space(selected_spaces, 'buy'):
spaces = {**spaces, **strategy.indicator_space()}
if has_space(selected_spaces, 'roi'):
spaces = {**spaces, **strategy.roi_space()}
if has_space(selected_spaces, 'stoploss'):
spaces = {**spaces, **strategy.stoploss_space()}
return spaces
def generate_optimizer(args, strategy):
def optimizer(params):
global _CURRENT_TRIES
if has_space(args.spaces, 'roi'):
strategy.minimal_roi = generate_roi_table(params)
if has_space(args.spaces, 'buy'):
backtesting.populate_buy_trend = strategy.buy_strategy_generator(params)
if has_space(args.spaces, 'stoploss'):
strategy.stoploss = params['stoploss']
results = backtest({'stake_amount': OPTIMIZE_CONFIG['stake_amount'],
'processed': PROCESSED,
'realistic': args.realistic_simulation,
})
result_explanation = format_results(results)
total_profit = results.profit_percent.sum()
trade_count = len(results.index)
trade_duration = results.duration.mean()
if trade_count == 0 or trade_duration > MAX_ACCEPTED_TRADE_DURATION:
print('.', end='')
return {
'status': STATUS_FAIL,
'loss': float('inf')
}
loss = calculate_loss(total_profit, trade_count, trade_duration)
_CURRENT_TRIES += 1
log_results({
'loss': loss,
'current_tries': _CURRENT_TRIES,
'total_tries': TOTAL_TRIES,
'result': result_explanation,
})
return {
'loss': loss,
'status': STATUS_OK,
'result': result_explanation,
}
return optimizer
def format_results(results: DataFrame):
return ('{:6d} trades. Avg profit {: 5.2f}%. '
'Total profit {: 11.8f} BTC ({:.4f}Σ%). Avg duration {:5.1f} mins.').format(
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_BTC.sum(),
results.profit_percent.sum(),
results.duration.mean(),
)
def start(args):
global TOTAL_TRIES, PROCESSED, TRIALS, _CURRENT_TRIES
TOTAL_TRIES = args.epochs
exchange._API = Bittrex({'key': '', 'secret': ''})
# Initialize logger
logging.basicConfig(
level=args.loglevel,
format='\n%(message)s',
)
logger.info('Using config: %s ...', args.config)
config = load_config(args.config)
pairs = config['exchange']['pair_whitelist']
# If -i/--ticker-interval is use we override the configuration parameter
# (that will override the strategy configuration)
if args.ticker_interval:
config.update({'ticker_interval': args.ticker_interval})
# init the strategy to use
config.update({'strategy': args.strategy})
strategy = Strategy()
strategy.init(config)
timerange = misc.parse_timerange(args.timerange)
data = optimize.load_data(args.datadir, pairs=pairs,
ticker_interval=strategy.ticker_interval,
timerange=timerange)
if has_space(args.spaces, 'buy'):
optimize.populate_indicators = strategy.populate_indicators
PROCESSED = optimize.tickerdata_to_dataframe(data)
if args.mongodb:
logger.info('Using mongodb ...')
logger.info('Start scripts/start-mongodb.sh and start-hyperopt-worker.sh manually!')
db_name = 'freqtrade_hyperopt'
TRIALS = MongoTrials('mongo://127.0.0.1:1234/{}/jobs'.format(db_name), exp_key='exp1')
else:
logger.info('Preparing Trials..')
signal.signal(signal.SIGINT, signal_handler)
# read trials file if we have one
if os.path.exists(TRIALS_FILE):
TRIALS = read_trials()
_CURRENT_TRIES = len(TRIALS.results)
TOTAL_TRIES = TOTAL_TRIES + _CURRENT_TRIES
logger.info(
'Continuing with trials. Current: {}, Total: {}'
.format(_CURRENT_TRIES, TOTAL_TRIES))
try:
best_parameters = fmin(
fn=generate_optimizer(args, strategy),
space=hyperopt_space(args.spaces, strategy),
algo=tpe.suggest,
max_evals=TOTAL_TRIES,
trials=TRIALS
)
results = sorted(TRIALS.results, key=itemgetter('loss'))
best_result = results[0]['result']
except ValueError:
best_parameters = {}
best_result = 'Sorry, Hyperopt was not able to find good parameters. Please ' \
'try with more epochs (param: -e).'
# Improve best parameter logging display
if best_parameters:
best_parameters = space_eval(
hyperopt_space(args.spaces, strategy),
best_parameters
)
logger.info('Best parameters:\n%s', json.dumps(best_parameters, indent=4))
if 'roi_t1' in best_parameters:
logger.info('ROI table:\n%s', generate_roi_table(best_parameters))
logger.info('Best Result:\n%s', best_result)
# Store trials result to file to resume next time
save_trials(TRIALS)
def signal_handler(sig, frame):
"""Hyperopt SIGINT handler"""
logger.info('Hyperopt received {}'.format(signal.Signals(sig).name))
save_trials(TRIALS)
log_trials_result(TRIALS)
sys.exit(0)