218 lines
8.0 KiB
Python
218 lines
8.0 KiB
Python
"""
|
|
Functions to analyze ticker data with indicators and produce buy and sell signals
|
|
"""
|
|
import logging
|
|
from datetime import datetime, timedelta
|
|
from enum import Enum
|
|
from typing import Dict, List, Tuple
|
|
|
|
import arrow
|
|
from pandas import DataFrame, to_datetime
|
|
|
|
from freqtrade import constants
|
|
from freqtrade.exchange import get_ticker_history
|
|
from freqtrade.persistence import Trade
|
|
from freqtrade.strategy.resolver import StrategyResolver, IStrategy
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class SignalType(Enum):
|
|
"""
|
|
Enum to distinguish between buy and sell signals
|
|
"""
|
|
BUY = "buy"
|
|
SELL = "sell"
|
|
|
|
|
|
class Analyze(object):
|
|
"""
|
|
Analyze class contains everything the bot need to determine if the situation is good for
|
|
buying or selling.
|
|
"""
|
|
def __init__(self, config: dict) -> None:
|
|
"""
|
|
Init Analyze
|
|
:param config: Bot configuration (use the one from Configuration())
|
|
"""
|
|
self.config = config
|
|
self.strategy: IStrategy = StrategyResolver(self.config).strategy
|
|
|
|
@staticmethod
|
|
def parse_ticker_dataframe(ticker: list) -> DataFrame:
|
|
"""
|
|
Analyses the trend for the given ticker history
|
|
:param ticker: See exchange.get_ticker_history
|
|
:return: DataFrame
|
|
"""
|
|
cols = ['date', 'open', 'high', 'low', 'close', 'volume']
|
|
frame = DataFrame(ticker, columns=cols)
|
|
|
|
frame['date'] = to_datetime(frame['date'],
|
|
unit='ms',
|
|
utc=True,
|
|
infer_datetime_format=True)
|
|
|
|
# group by index and aggregate results to eliminate duplicate ticks
|
|
frame = frame.groupby(by='date', as_index=False, sort=True).agg({
|
|
'open': 'first',
|
|
'high': 'max',
|
|
'low': 'min',
|
|
'close': 'last',
|
|
'volume': 'max',
|
|
})
|
|
return frame
|
|
|
|
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
|
|
"""
|
|
Adds several different TA indicators to the given DataFrame
|
|
|
|
Performance Note: For the best performance be frugal on the number of indicators
|
|
you are using. Let uncomment only the indicator you are using in your strategies
|
|
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
|
"""
|
|
return self.strategy.populate_indicators(dataframe=dataframe)
|
|
|
|
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
|
"""
|
|
Based on TA indicators, populates the buy signal for the given dataframe
|
|
:param dataframe: DataFrame
|
|
:return: DataFrame with buy column
|
|
"""
|
|
return self.strategy.populate_buy_trend(dataframe=dataframe)
|
|
|
|
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
|
|
"""
|
|
Based on TA indicators, populates the sell signal for the given dataframe
|
|
:param dataframe: DataFrame
|
|
:return: DataFrame with buy column
|
|
"""
|
|
return self.strategy.populate_sell_trend(dataframe=dataframe)
|
|
|
|
def get_ticker_interval(self) -> str:
|
|
"""
|
|
Return ticker interval to use
|
|
:return: Ticker interval value to use
|
|
"""
|
|
return self.strategy.ticker_interval # type: ignore
|
|
|
|
def analyze_ticker(self, ticker_history: List[Dict]) -> DataFrame:
|
|
"""
|
|
Parses the given ticker history and returns a populated DataFrame
|
|
add several TA indicators and buy signal to it
|
|
:return DataFrame with ticker data and indicator data
|
|
"""
|
|
dataframe = self.parse_ticker_dataframe(ticker_history)
|
|
dataframe = self.populate_indicators(dataframe)
|
|
dataframe = self.populate_buy_trend(dataframe)
|
|
dataframe = self.populate_sell_trend(dataframe)
|
|
return dataframe
|
|
|
|
def get_signal(self, pair: str, interval: str) -> Tuple[bool, bool]:
|
|
"""
|
|
Calculates current signal based several technical analysis indicators
|
|
:param pair: pair in format ANT/BTC
|
|
:param interval: Interval to use (in min)
|
|
:return: (Buy, Sell) A bool-tuple indicating buy/sell signal
|
|
"""
|
|
ticker_hist = get_ticker_history(pair, interval)
|
|
if not ticker_hist:
|
|
logger.warning('Empty ticker history for pair %s', pair)
|
|
return False, False
|
|
|
|
try:
|
|
dataframe = self.analyze_ticker(ticker_hist)
|
|
except ValueError as error:
|
|
logger.warning(
|
|
'Unable to analyze ticker for pair %s: %s',
|
|
pair,
|
|
str(error)
|
|
)
|
|
return False, False
|
|
except Exception as error:
|
|
logger.exception(
|
|
'Unexpected error when analyzing ticker for pair %s: %s',
|
|
pair,
|
|
str(error)
|
|
)
|
|
return False, False
|
|
|
|
if dataframe.empty:
|
|
logger.warning('Empty dataframe for pair %s', pair)
|
|
return False, False
|
|
|
|
latest = dataframe.iloc[-1]
|
|
|
|
# Check if dataframe is out of date
|
|
signal_date = arrow.get(latest['date'])
|
|
interval_minutes = constants.TICKER_INTERVAL_MINUTES[interval]
|
|
if signal_date < arrow.utcnow() - timedelta(minutes=(interval_minutes + 5)):
|
|
logger.warning(
|
|
'Outdated history for pair %s. Last tick is %s minutes old',
|
|
pair,
|
|
(arrow.utcnow() - signal_date).seconds // 60
|
|
)
|
|
return False, False
|
|
|
|
(buy, sell) = latest[SignalType.BUY.value] == 1, latest[SignalType.SELL.value] == 1
|
|
logger.debug(
|
|
'trigger: %s (pair=%s) buy=%s sell=%s',
|
|
latest['date'],
|
|
pair,
|
|
str(buy),
|
|
str(sell)
|
|
)
|
|
return buy, sell
|
|
|
|
def should_sell(self, trade: Trade, rate: float, date: datetime, buy: bool, sell: bool) -> bool:
|
|
"""
|
|
This function evaluate if on the condition required to trigger a sell has been reached
|
|
if the threshold is reached and updates the trade record.
|
|
:return: True if trade should be sold, False otherwise
|
|
"""
|
|
# Check if minimal roi has been reached and no longer in buy conditions (avoiding a fee)
|
|
if self.min_roi_reached(trade=trade, current_rate=rate, current_time=date):
|
|
logger.debug('Required profit reached. Selling..')
|
|
return True
|
|
|
|
# Experimental: Check if the trade is profitable before selling it (avoid selling at loss)
|
|
if self.config.get('experimental', {}).get('sell_profit_only', False):
|
|
logger.debug('Checking if trade is profitable..')
|
|
if trade.calc_profit(rate=rate) <= 0:
|
|
return False
|
|
|
|
if sell and not buy and self.config.get('experimental', {}).get('use_sell_signal', False):
|
|
logger.debug('Sell signal received. Selling..')
|
|
return True
|
|
|
|
return False
|
|
|
|
def min_roi_reached(self, trade: Trade, current_rate: float, current_time: datetime) -> bool:
|
|
"""
|
|
Based an earlier trade and current price and ROI configuration, decides whether bot should
|
|
sell
|
|
:return True if bot should sell at current rate
|
|
"""
|
|
current_profit = trade.calc_profit_percent(current_rate)
|
|
if self.strategy.stoploss is not None and current_profit < self.strategy.stoploss: # type: ignore
|
|
logger.debug('Stop loss hit.')
|
|
return True
|
|
|
|
# Check if time matches and current rate is above threshold
|
|
time_diff = (current_time.timestamp() - trade.open_date.timestamp()) / 60
|
|
for duration, threshold in self.strategy.minimal_roi.items(): # type: ignore
|
|
if time_diff <= duration:
|
|
return False
|
|
if current_profit > threshold:
|
|
return True
|
|
|
|
return False
|
|
|
|
def tickerdata_to_dataframe(self, tickerdata: Dict[str, List]) -> Dict[str, DataFrame]:
|
|
"""
|
|
Creates a dataframe and populates indicators for given ticker data
|
|
"""
|
|
return {pair: self.populate_indicators(self.parse_ticker_dataframe(pair_data))
|
|
for pair, pair_data in tickerdata.items()}
|