stable/tests/optimize/test_backtesting.py
Matthias 314a544881 Add Failing test for get_strategy_run_id
Fails because max_open_trades is "inf"
emulates behaviour of `max_open_trades=-1` when loading the
configuration)
2022-01-22 08:09:08 +01:00

1371 lines
55 KiB
Python

# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
import random
from copy import deepcopy
from datetime import datetime, timedelta, timezone
from pathlib import Path
from unittest.mock import MagicMock, PropertyMock
import numpy as np
import pandas as pd
import pytest
from arrow import Arrow
from freqtrade import constants
from freqtrade.commands.optimize_commands import setup_optimize_configuration, start_backtesting
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.data.btanalysis import BT_DATA_COLUMNS, evaluate_result_multi
from freqtrade.data.converter import clean_ohlcv_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.data.history import get_timerange
from freqtrade.enums import RunMode, SellType
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.misc import get_strategy_run_id
from freqtrade.optimize.backtesting import Backtesting
from freqtrade.persistence import LocalTrade
from freqtrade.resolvers import StrategyResolver
from tests.conftest import (get_args, log_has, log_has_re, patch_exchange,
patched_configuration_load_config_file)
ORDER_TYPES = [
{
'buy': 'limit',
'sell': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': False
},
{
'buy': 'limit',
'sell': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': True
}]
def trim_dictlist(dict_list, num):
new = {}
for pair, pair_data in dict_list.items():
new[pair] = pair_data[num:].reset_index()
return new
def load_data_test(what, testdatadir):
timerange = TimeRange.parse_timerange('1510694220-1510700340')
data = history.load_pair_history(pair='UNITTEST/BTC', datadir=testdatadir,
timeframe='1m', timerange=timerange,
drop_incomplete=False,
fill_up_missing=False)
base = 0.001
if what == 'raise':
data.loc[:, 'open'] = data.index * base
data.loc[:, 'high'] = data.index * base + 0.0001
data.loc[:, 'low'] = data.index * base - 0.0001
data.loc[:, 'close'] = data.index * base
if what == 'lower':
data.loc[:, 'open'] = 1 - data.index * base
data.loc[:, 'high'] = 1 - data.index * base + 0.0001
data.loc[:, 'low'] = 1 - data.index * base - 0.0001
data.loc[:, 'close'] = 1 - data.index * base
if what == 'sine':
hz = 0.1 # frequency
data.loc[:, 'open'] = np.sin(data.index * hz) / 1000 + base
data.loc[:, 'high'] = np.sin(data.index * hz) / 1000 + base + 0.0001
data.loc[:, 'low'] = np.sin(data.index * hz) / 1000 + base - 0.0001
data.loc[:, 'close'] = np.sin(data.index * hz) / 1000 + base
return {'UNITTEST/BTC': clean_ohlcv_dataframe(data, timeframe='1m', pair='UNITTEST/BTC',
fill_missing=True)}
def simple_backtest(config, contour, mocker, testdatadir) -> None:
patch_exchange(mocker)
config['timeframe'] = '1m'
backtesting = Backtesting(config)
backtesting._set_strategy(backtesting.strategylist[0])
data = load_data_test(contour, testdatadir)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
assert isinstance(processed, dict)
results = backtesting.backtest(
processed=processed,
start_date=min_date,
end_date=max_date,
max_open_trades=1,
position_stacking=False,
enable_protections=config.get('enable_protections', False),
)
# results :: <class 'pandas.core.frame.DataFrame'>
return results
# FIX: fixturize this?
def _make_backtest_conf(mocker, datadir, conf=None, pair='UNITTEST/BTC'):
data = history.load_data(datadir=datadir, timeframe='1m', pairs=[pair])
data = trim_dictlist(data, -201)
patch_exchange(mocker)
backtesting = Backtesting(conf)
backtesting._set_strategy(backtesting.strategylist[0])
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
return {
'processed': processed,
'start_date': min_date,
'end_date': max_date,
'max_open_trades': 10,
'position_stacking': False,
}
def _trend(signals, buy_value, sell_value):
n = len(signals['low'])
buy = np.zeros(n)
sell = np.zeros(n)
for i in range(0, len(signals['buy'])):
if random.random() > 0.5: # Both buy and sell signals at same timeframe
buy[i] = buy_value
sell[i] = sell_value
signals['buy'] = buy
signals['sell'] = sell
return signals
def _trend_alternate(dataframe=None, metadata=None):
signals = dataframe
low = signals['low']
n = len(low)
buy = np.zeros(n)
sell = np.zeros(n)
for i in range(0, len(buy)):
if i % 2 == 0:
buy[i] = 1
else:
sell[i] = 1
signals['buy'] = buy
signals['sell'] = sell
return dataframe
# Unit tests
def test_setup_optimize_configuration_without_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'StrategyTestV2',
'--export', 'none'
]
config = setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
assert 'timeframe' in config
assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog)
assert 'position_stacking' not in config
assert not log_has('Parameter --enable-position-stacking detected ...', caplog)
assert 'timerange' not in config
assert 'export' in config
assert config['export'] == 'none'
assert 'runmode' in config
assert config['runmode'] == RunMode.BACKTEST
def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
mocker.patch(
'freqtrade.configuration.configuration.create_datadir',
lambda c, x: x
)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'StrategyTestV2',
'--datadir', '/foo/bar',
'--timeframe', '1m',
'--enable-position-stacking',
'--disable-max-market-positions',
'--timerange', ':100',
'--export-filename', 'foo_bar.json',
'--fee', '0',
]
config = setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert config['runmode'] == RunMode.BACKTEST
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
assert 'timeframe' in config
assert log_has('Parameter -i/--timeframe detected ... Using timeframe: 1m ...',
caplog)
assert 'position_stacking' in config
assert log_has('Parameter --enable-position-stacking detected ...', caplog)
assert 'use_max_market_positions' in config
assert log_has('Parameter --disable-max-market-positions detected ...', caplog)
assert log_has('max_open_trades set to unlimited ...', caplog)
assert 'timerange' in config
assert log_has('Parameter --timerange detected: {} ...'.format(config['timerange']), caplog)
assert 'export' in config
assert 'exportfilename' in config
assert isinstance(config['exportfilename'], Path)
assert log_has('Storing backtest results to {} ...'.format(config['exportfilename']), caplog)
assert 'fee' in config
assert log_has('Parameter --fee detected, setting fee to: {} ...'.format(config['fee']), caplog)
def test_setup_optimize_configuration_stake_amount(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'StrategyTestV2',
'--stake-amount', '1',
'--starting-balance', '2'
]
conf = setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
assert isinstance(conf, dict)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'StrategyTestV2',
'--stake-amount', '1',
'--starting-balance', '0.5'
]
with pytest.raises(OperationalException, match=r"Starting balance .* smaller .*"):
setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
def test_start(mocker, fee, default_conf, caplog) -> None:
start_mock = MagicMock()
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.start', start_mock)
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'StrategyTestV2',
]
pargs = get_args(args)
start_backtesting(pargs)
assert log_has('Starting freqtrade in Backtesting mode', caplog)
assert start_mock.call_count == 1
@pytest.mark.parametrize("order_types", ORDER_TYPES)
def test_backtesting_init(mocker, default_conf, order_types) -> None:
"""
Check that stoploss_on_exchange is set to False while backtesting
since backtesting assumes a perfect stoploss anyway.
"""
default_conf["order_types"] = order_types
patch_exchange(mocker)
get_fee = mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
assert backtesting.config == default_conf
assert backtesting.timeframe == '5m'
assert callable(backtesting.strategy.advise_all_indicators)
assert callable(backtesting.strategy.advise_buy)
assert callable(backtesting.strategy.advise_sell)
assert isinstance(backtesting.strategy.dp, DataProvider)
get_fee.assert_called()
assert backtesting.fee == 0.5
assert not backtesting.strategy.order_types["stoploss_on_exchange"]
def test_backtesting_init_no_timeframe(mocker, default_conf, caplog) -> None:
patch_exchange(mocker)
del default_conf['timeframe']
default_conf['strategy_list'] = ['StrategyTestV2',
'SampleStrategy']
mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
with pytest.raises(OperationalException):
Backtesting(default_conf)
log_has("Ticker-interval needs to be set in either configuration "
"or as cli argument `--ticker-interval 5m`", caplog)
def test_data_with_fee(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
default_conf['fee'] = 0.1234
fee_mock = mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
assert backtesting.fee == 0.1234
assert fee_mock.call_count == 0
default_conf['fee'] = 0.0
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
assert backtesting.fee == 0.0
assert fee_mock.call_count == 0
def test_data_to_dataframe_bt(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
timerange = TimeRange.parse_timerange('1510694220-1510700340')
data = history.load_data(testdatadir, '1m', ['UNITTEST/BTC'], timerange=timerange,
fill_up_missing=True)
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
processed = backtesting.strategy.advise_all_indicators(data)
assert len(processed['UNITTEST/BTC']) == 102
# Load strategy to compare the result between Backtesting function and strategy are the same
default_conf.update({'strategy': 'StrategyTestV2'})
strategy = StrategyResolver.load_strategy(default_conf)
processed2 = strategy.advise_all_indicators(data)
assert processed['UNITTEST/BTC'].equals(processed2['UNITTEST/BTC'])
def test_backtest_abort(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
backtesting.check_abort()
backtesting.abort = True
with pytest.raises(DependencyException, match="Stop requested"):
backtesting.check_abort()
# abort flag resets
assert backtesting.abort is False
assert backtesting.progress.progress == 0
def test_backtesting_start(default_conf, mocker, testdatadir, caplog) -> None:
def get_timerange(input1):
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
mocker.patch('freqtrade.data.history.get_timerange', get_timerange)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest')
mocker.patch('freqtrade.optimize.backtesting.generate_backtest_stats')
mocker.patch('freqtrade.optimize.backtesting.show_backtest_results')
sbs = mocker.patch('freqtrade.optimize.backtesting.store_backtest_stats')
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['UNITTEST/BTC']))
default_conf['timeframe'] = '1m'
default_conf['datadir'] = testdatadir
default_conf['export'] = 'trades'
default_conf['exportfilename'] = 'export.txt'
default_conf['timerange'] = '-1510694220'
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.bot_loop_start = MagicMock()
backtesting.start()
# check the logs, that will contain the backtest result
exists = [
'Backtesting with data from 2017-11-14 21:17:00 '
'up to 2017-11-14 22:59:00 (0 days).'
]
for line in exists:
assert log_has(line, caplog)
assert backtesting.strategy.dp._pairlists is not None
assert backtesting.strategy.bot_loop_start.call_count == 1
assert sbs.call_count == 1
def test_backtesting_start_no_data(default_conf, mocker, caplog, testdatadir) -> None:
def get_timerange(input1):
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
mocker.patch('freqtrade.data.history.history_utils.load_pair_history',
MagicMock(return_value=pd.DataFrame()))
mocker.patch('freqtrade.data.history.get_timerange', get_timerange)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest')
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['UNITTEST/BTC']))
default_conf['timeframe'] = "1m"
default_conf['datadir'] = testdatadir
default_conf['export'] = 'none'
default_conf['timerange'] = '20180101-20180102'
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
with pytest.raises(OperationalException, match='No data found. Terminating.'):
backtesting.start()
def test_backtesting_no_pair_left(default_conf, mocker, caplog, testdatadir) -> None:
mocker.patch('freqtrade.exchange.Exchange.exchange_has', MagicMock(return_value=True))
mocker.patch('freqtrade.data.history.history_utils.load_pair_history',
MagicMock(return_value=pd.DataFrame()))
mocker.patch('freqtrade.data.history.get_timerange', get_timerange)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest')
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=[]))
default_conf['timeframe'] = "1m"
default_conf['datadir'] = testdatadir
default_conf['export'] = 'none'
default_conf['timerange'] = '20180101-20180102'
with pytest.raises(OperationalException, match='No pair in whitelist.'):
Backtesting(default_conf)
default_conf['pairlists'] = [{"method": "VolumePairList", "number_assets": 5}]
with pytest.raises(OperationalException,
match=r'VolumePairList not allowed for backtesting\..*StaticPairlist.*'):
Backtesting(default_conf)
default_conf.update({
'pairlists': [{"method": "StaticPairList"}],
'timeframe_detail': '1d',
})
with pytest.raises(OperationalException,
match='Detail timeframe must be smaller than strategy timeframe.'):
Backtesting(default_conf)
def test_backtesting_pairlist_list(default_conf, mocker, caplog, testdatadir, tickers) -> None:
mocker.patch('freqtrade.exchange.Exchange.exchange_has', MagicMock(return_value=True))
mocker.patch('freqtrade.exchange.Exchange.get_tickers', tickers)
mocker.patch('freqtrade.exchange.Exchange.price_to_precision', lambda s, x, y: y)
mocker.patch('freqtrade.data.history.get_timerange', get_timerange)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest')
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['XRP/BTC']))
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.refresh_pairlist')
default_conf['ticker_interval'] = "1m"
default_conf['datadir'] = testdatadir
default_conf['export'] = 'none'
# Use stoploss from strategy
del default_conf['stoploss']
default_conf['timerange'] = '20180101-20180102'
default_conf['pairlists'] = [{"method": "VolumePairList", "number_assets": 5}]
with pytest.raises(OperationalException,
match=r'VolumePairList not allowed for backtesting\..*StaticPairlist.*'):
Backtesting(default_conf)
default_conf['pairlists'] = [{"method": "StaticPairList"}, {"method": "PerformanceFilter"}]
with pytest.raises(OperationalException,
match='PerformanceFilter not allowed for backtesting.'):
Backtesting(default_conf)
default_conf['pairlists'] = [{"method": "StaticPairList"}, {"method": "PrecisionFilter"}, ]
Backtesting(default_conf)
# Multiple strategies
default_conf['strategy_list'] = ['StrategyTestV2', 'TestStrategyLegacyV1']
with pytest.raises(OperationalException,
match='PrecisionFilter not allowed for backtesting multiple strategies.'):
Backtesting(default_conf)
def test_backtest__enter_trade(default_conf, fee, mocker) -> None:
default_conf['use_sell_signal'] = False
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
patch_exchange(mocker)
default_conf['stake_amount'] = 'unlimited'
default_conf['max_open_trades'] = 2
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
pair = 'UNITTEST/BTC'
row = [
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=0),
1, # Buy
0.001, # Open
0.0011, # Close
0, # Sell
0.00099, # Low
0.0012, # High
'', # Buy Signal Name
]
trade = backtesting._enter_trade(pair, row=row)
assert isinstance(trade, LocalTrade)
assert trade.stake_amount == 495
# Fake 2 trades, so there's not enough amount for the next trade left.
LocalTrade.trades_open.append(trade)
LocalTrade.trades_open.append(trade)
trade = backtesting._enter_trade(pair, row=row)
assert trade is None
LocalTrade.trades_open.pop()
trade = backtesting._enter_trade(pair, row=row)
assert trade is not None
backtesting.strategy.custom_stake_amount = lambda **kwargs: 123.5
trade = backtesting._enter_trade(pair, row=row)
assert trade
assert trade.stake_amount == 123.5
# In case of error - use proposed stake
backtesting.strategy.custom_stake_amount = lambda **kwargs: 20 / 0
trade = backtesting._enter_trade(pair, row=row)
assert trade
assert trade.stake_amount == 495
# Stake-amount too high!
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=600.0)
trade = backtesting._enter_trade(pair, row=row)
assert trade is None
# Stake-amount throwing error
mocker.patch("freqtrade.wallets.Wallets.get_trade_stake_amount",
side_effect=DependencyException)
trade = backtesting._enter_trade(pair, row=row)
assert trade is None
backtesting.cleanup()
def test_backtest__get_sell_trade_entry(default_conf, fee, mocker) -> None:
default_conf['use_sell_signal'] = False
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
patch_exchange(mocker)
default_conf['timeframe_detail'] = '1m'
default_conf['max_open_trades'] = 2
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
pair = 'UNITTEST/BTC'
row = [
pd.Timestamp(year=2020, month=1, day=1, hour=4, minute=55, tzinfo=timezone.utc),
1, # Buy
200, # Open
201, # Close
0, # Sell
195, # Low
201.5, # High
'', # Buy Signal Name
'', # Exit Signal Name
]
trade = backtesting._enter_trade(pair, row=row)
assert isinstance(trade, LocalTrade)
row_sell = [
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=0, tzinfo=timezone.utc),
0, # Buy
200, # Open
201, # Close
0, # Sell
195, # Low
210.5, # High
'', # Buy Signal Name
'', # Exit Signal Name
]
row_detail = pd.DataFrame(
[
[
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=0, tzinfo=timezone.utc),
1, 200, 199, 0, 197, 200.1, '', '',
], [
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=1, tzinfo=timezone.utc),
0, 199, 199.5, 0, 199, 199.7, '', '',
], [
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=2, tzinfo=timezone.utc),
0, 199.5, 200.5, 0, 199, 200.8, '', '',
], [
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=3, tzinfo=timezone.utc),
0, 200.5, 210.5, 0, 193, 210.5, '', '', # ROI sell (?)
], [
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=4, tzinfo=timezone.utc),
0, 200, 199, 0, 193, 200.1, '', '',
],
], columns=["date", "buy", "open", "close", "sell", "low", "high", "buy_tag", "exit_tag"]
)
# No data available.
res = backtesting._get_sell_trade_entry(trade, row_sell)
assert res is not None
assert res.sell_reason == SellType.ROI.value
assert res.close_date_utc == datetime(2020, 1, 1, 5, 0, tzinfo=timezone.utc)
# Enter new trade
trade = backtesting._enter_trade(pair, row=row)
assert isinstance(trade, LocalTrade)
# Assign empty ... no result.
backtesting.detail_data[pair] = pd.DataFrame(
[], columns=["date", "buy", "open", "close", "sell", "low", "high", "buy_tag", "exit_tag"])
res = backtesting._get_sell_trade_entry(trade, row)
assert res is None
# Assign backtest-detail data
backtesting.detail_data[pair] = row_detail
res = backtesting._get_sell_trade_entry(trade, row_sell)
assert res is not None
assert res.sell_reason == SellType.ROI.value
# Sell at minute 3 (not available above!)
assert res.close_date_utc == datetime(2020, 1, 1, 5, 3, tzinfo=timezone.utc)
assert round(res.close_rate, 3) == round(209.0225, 3)
def test_backtest_one(default_conf, fee, mocker, testdatadir) -> None:
default_conf['use_sell_signal'] = False
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
pair = 'UNITTEST/BTC'
timerange = TimeRange('date', None, 1517227800, 0)
data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=['UNITTEST/BTC'],
timerange=timerange)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
result = backtesting.backtest(
processed=deepcopy(processed),
start_date=min_date,
end_date=max_date,
max_open_trades=10,
position_stacking=False,
)
results = result['results']
assert not results.empty
assert len(results) == 2
expected = pd.DataFrame(
{'pair': [pair, pair],
'stake_amount': [0.001, 0.001],
'amount': [0.00957442, 0.0097064],
'open_date': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime,
Arrow(2018, 1, 30, 3, 30, 0).datetime], utc=True
),
'close_date': pd.to_datetime([Arrow(2018, 1, 29, 22, 35, 0).datetime,
Arrow(2018, 1, 30, 4, 10, 0).datetime], utc=True),
'open_rate': [0.104445, 0.10302485],
'close_rate': [0.104969, 0.103541],
'fee_open': [0.0025, 0.0025],
'fee_close': [0.0025, 0.0025],
'trade_duration': [235, 40],
'profit_ratio': [0.0, 0.0],
'profit_abs': [0.0, 0.0],
'sell_reason': [SellType.ROI.value, SellType.ROI.value],
'initial_stop_loss_abs': [0.0940005, 0.09272236],
'initial_stop_loss_ratio': [-0.1, -0.1],
'stop_loss_abs': [0.0940005, 0.09272236],
'stop_loss_ratio': [-0.1, -0.1],
'min_rate': [0.10370188, 0.10300000000000001],
'max_rate': [0.10501, 0.1038888],
'is_open': [False, False],
'buy_tag': [None, None]
})
pd.testing.assert_frame_equal(results, expected)
data_pair = processed[pair]
for _, t in results.iterrows():
ln = data_pair.loc[data_pair["date"] == t["open_date"]]
# Check open trade rate alignes to open rate
assert ln is not None
assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6)
# check close trade rate alignes to close rate or is between high and low
ln = data_pair.loc[data_pair["date"] == t["close_date"]]
assert (round(ln.iloc[0]["open"], 6) == round(t["close_rate"], 6) or
round(ln.iloc[0]["low"], 6) < round(
t["close_rate"], 6) < round(ln.iloc[0]["high"], 6))
def test_backtest_1min_timeframe(default_conf, fee, mocker, testdatadir) -> None:
default_conf['use_sell_signal'] = False
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
# Run a backtesting for an exiting 1min timeframe
timerange = TimeRange.parse_timerange('1510688220-1510700340')
data = history.load_data(datadir=testdatadir, timeframe='1m', pairs=['UNITTEST/BTC'],
timerange=timerange)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
results = backtesting.backtest(
processed=processed,
start_date=min_date,
end_date=max_date,
max_open_trades=1,
position_stacking=False,
)
assert not results['results'].empty
assert len(results['results']) == 1
def test_processed(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
dict_of_tickerrows = load_data_test('raise', testdatadir)
dataframes = backtesting.strategy.advise_all_indicators(dict_of_tickerrows)
dataframe = dataframes['UNITTEST/BTC']
cols = dataframe.columns
# assert the dataframe got some of the indicator columns
for col in ['close', 'high', 'low', 'open', 'date',
'ema10', 'rsi', 'fastd', 'plus_di']:
assert col in cols
def test_backtest_pricecontours_protections(default_conf, fee, mocker, testdatadir) -> None:
# While this test IS a copy of test_backtest_pricecontours, it's needed to ensure
# results do not carry-over to the next run, which is not given by using parametrize.
default_conf['protections'] = [
{
"method": "CooldownPeriod",
"stop_duration": 3,
}]
default_conf['enable_protections'] = True
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
tests = [
['sine', 9],
['raise', 10],
['lower', 0],
['sine', 9],
['raise', 10],
]
# While buy-signals are unrealistic, running backtesting
# over and over again should not cause different results
for [contour, numres] in tests:
assert len(simple_backtest(default_conf, contour, mocker, testdatadir)['results']) == numres
@pytest.mark.parametrize('protections,contour,expected', [
(None, 'sine', 35),
(None, 'raise', 19),
(None, 'lower', 0),
(None, 'sine', 35),
(None, 'raise', 19),
([{"method": "CooldownPeriod", "stop_duration": 3}], 'sine', 9),
([{"method": "CooldownPeriod", "stop_duration": 3}], 'raise', 10),
([{"method": "CooldownPeriod", "stop_duration": 3}], 'lower', 0),
([{"method": "CooldownPeriod", "stop_duration": 3}], 'sine', 9),
([{"method": "CooldownPeriod", "stop_duration": 3}], 'raise', 10),
])
def test_backtest_pricecontours(default_conf, fee, mocker, testdatadir,
protections, contour, expected) -> None:
if protections:
default_conf['protections'] = protections
default_conf['enable_protections'] = True
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
# While buy-signals are unrealistic, running backtesting
# over and over again should not cause different results
assert len(simple_backtest(default_conf, contour, mocker, testdatadir)['results']) == expected
def test_backtest_clash_buy_sell(mocker, default_conf, testdatadir):
# Override the default buy trend function in our StrategyTestV2
def fun(dataframe=None, pair=None):
buy_value = 1
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir)
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.advise_buy = fun # Override
backtesting.strategy.advise_sell = fun # Override
result = backtesting.backtest(**backtest_conf)
assert result['results'].empty
def test_backtest_only_sell(mocker, default_conf, testdatadir):
# Override the default buy trend function in our StrategyTestV2
def fun(dataframe=None, pair=None):
buy_value = 0
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir)
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.advise_buy = fun # Override
backtesting.strategy.advise_sell = fun # Override
result = backtesting.backtest(**backtest_conf)
assert result['results'].empty
def test_backtest_alternate_buy_sell(default_conf, fee, mocker, testdatadir):
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
backtest_conf = _make_backtest_conf(mocker, conf=default_conf,
pair='UNITTEST/BTC', datadir=testdatadir)
default_conf['timeframe'] = '1m'
backtesting = Backtesting(default_conf)
backtesting.required_startup = 0
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.advise_buy = _trend_alternate # Override
backtesting.strategy.advise_sell = _trend_alternate # Override
result = backtesting.backtest(**backtest_conf)
# 200 candles in backtest data
# won't buy on first (shifted by 1)
# 100 buys signals
results = result['results']
assert len(results) == 100
# Cached data should be 200
analyzed_df = backtesting.dataprovider.get_analyzed_dataframe('UNITTEST/BTC', '1m')[0]
assert len(analyzed_df) == 200
# Expect last candle to be 1 below end date (as the last candle is assumed as "incomplete"
# during backtesting)
expected_last_candle_date = backtest_conf['end_date'] - timedelta(minutes=1)
assert analyzed_df.iloc[-1]['date'].to_pydatetime() == expected_last_candle_date
# One trade was force-closed at the end
assert len(results.loc[results['is_open']]) == 0
@pytest.mark.parametrize("pair", ['ADA/BTC', 'LTC/BTC'])
@pytest.mark.parametrize("tres", [0, 20, 30])
def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir):
def _trend_alternate_hold(dataframe=None, metadata=None):
"""
Buy every xth candle - sell every other xth -2 (hold on to pairs a bit)
"""
if metadata['pair'] in ('ETH/BTC', 'LTC/BTC'):
multi = 20
else:
multi = 18
dataframe['buy'] = np.where(dataframe.index % multi == 0, 1, 0)
dataframe['sell'] = np.where((dataframe.index + multi - 2) % multi == 0, 1, 0)
return dataframe
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
patch_exchange(mocker)
pairs = ['ADA/BTC', 'DASH/BTC', 'ETH/BTC', 'LTC/BTC', 'NXT/BTC']
data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=pairs)
# Only use 500 lines to increase performance
data = trim_dictlist(data, -500)
# Remove data for one pair from the beginning of the data
if tres > 0:
data[pair] = data[pair][tres:].reset_index()
default_conf['timeframe'] = '5m'
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.advise_buy = _trend_alternate_hold # Override
backtesting.strategy.advise_sell = _trend_alternate_hold # Override
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
backtest_conf = {
'processed': deepcopy(processed),
'start_date': min_date,
'end_date': max_date,
'max_open_trades': 3,
'position_stacking': False,
}
results = backtesting.backtest(**backtest_conf)
# Make sure we have parallel trades
assert len(evaluate_result_multi(results['results'], '5m', 2)) > 0
# make sure we don't have trades with more than configured max_open_trades
assert len(evaluate_result_multi(results['results'], '5m', 3)) == 0
# Cached data correctly removed amounts
offset = 1 if tres == 0 else 0
removed_candles = len(data[pair]) - offset - backtesting.strategy.startup_candle_count
assert len(backtesting.dataprovider.get_analyzed_dataframe(pair, '5m')[0]) == removed_candles
assert len(backtesting.dataprovider.get_analyzed_dataframe(
'NXT/BTC', '5m')[0]) == len(data['NXT/BTC']) - 1 - backtesting.strategy.startup_candle_count
backtest_conf = {
'processed': deepcopy(processed),
'start_date': min_date,
'end_date': max_date,
'max_open_trades': 1,
'position_stacking': False,
}
results = backtesting.backtest(**backtest_conf)
assert len(evaluate_result_multi(results['results'], '5m', 1)) == 0
def test_backtest_start_timerange(default_conf, mocker, caplog, testdatadir):
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest')
mocker.patch('freqtrade.optimize.backtesting.generate_backtest_stats')
mocker.patch('freqtrade.optimize.backtesting.show_backtest_results')
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['UNITTEST/BTC']))
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'StrategyTestV2',
'--datadir', str(testdatadir),
'--timeframe', '1m',
'--timerange', '1510694220-1510700340',
'--enable-position-stacking',
'--disable-max-market-positions'
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--timeframe detected ... Using timeframe: 1m ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: 1510694220-1510700340 ...',
f'Using data directory: {testdatadir} ...',
'Loading data from 2017-11-14 20:57:00 '
'up to 2017-11-14 22:58:00 (0 days).',
'Backtesting with data from 2017-11-14 21:17:00 '
'up to 2017-11-14 22:58:00 (0 days).',
'Parameter --enable-position-stacking detected ...'
]
for line in exists:
assert log_has(line, caplog)
@pytest.mark.filterwarnings("ignore:deprecated")
def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir):
default_conf.update({
"use_sell_signal": True,
"sell_profit_only": False,
"sell_profit_offset": 0.0,
"ignore_roi_if_buy_signal": False,
})
patch_exchange(mocker)
backtestmock = MagicMock(return_value={
'results': pd.DataFrame(columns=BT_DATA_COLUMNS),
'config': default_conf,
'locks': [],
'rejected_signals': 20,
'final_balance': 1000,
})
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['UNITTEST/BTC']))
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
text_table_mock = MagicMock()
sell_reason_mock = MagicMock()
strattable_mock = MagicMock()
strat_summary = MagicMock()
mocker.patch.multiple('freqtrade.optimize.optimize_reports',
text_table_bt_results=text_table_mock,
text_table_strategy=strattable_mock,
generate_pair_metrics=MagicMock(),
generate_sell_reason_stats=sell_reason_mock,
generate_strategy_comparison=strat_summary,
generate_daily_stats=MagicMock(),
)
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--datadir', str(testdatadir),
'--strategy-path', str(Path(__file__).parents[1] / 'strategy/strats'),
'--timeframe', '1m',
'--timerange', '1510694220-1510700340',
'--enable-position-stacking',
'--disable-max-market-positions',
'--strategy-list',
'StrategyTestV2',
'TestStrategyLegacyV1',
]
args = get_args(args)
start_backtesting(args)
# 2 backtests, 4 tables
assert backtestmock.call_count == 2
assert text_table_mock.call_count == 4
assert strattable_mock.call_count == 1
assert sell_reason_mock.call_count == 2
assert strat_summary.call_count == 1
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--timeframe detected ... Using timeframe: 1m ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: 1510694220-1510700340 ...',
f'Using data directory: {testdatadir} ...',
'Loading data from 2017-11-14 20:57:00 '
'up to 2017-11-14 22:58:00 (0 days).',
'Backtesting with data from 2017-11-14 21:17:00 '
'up to 2017-11-14 22:58:00 (0 days).',
'Parameter --enable-position-stacking detected ...',
'Running backtesting for Strategy StrategyTestV2',
'Running backtesting for Strategy TestStrategyLegacyV1',
]
for line in exists:
assert log_has(line, caplog)
@pytest.mark.filterwarnings("ignore:deprecated")
def test_backtest_start_multi_strat_nomock(default_conf, mocker, caplog, testdatadir, capsys):
default_conf.update({
"use_sell_signal": True,
"sell_profit_only": False,
"sell_profit_offset": 0.0,
"ignore_roi_if_buy_signal": False,
})
patch_exchange(mocker)
result1 = pd.DataFrame({'pair': ['XRP/BTC', 'LTC/BTC'],
'profit_ratio': [0.0, 0.0],
'profit_abs': [0.0, 0.0],
'open_date': pd.to_datetime(['2018-01-29 18:40:00',
'2018-01-30 03:30:00', ], utc=True
),
'close_date': pd.to_datetime(['2018-01-29 20:45:00',
'2018-01-30 05:35:00', ], utc=True),
'trade_duration': [235, 40],
'is_open': [False, False],
'stake_amount': [0.01, 0.01],
'open_rate': [0.104445, 0.10302485],
'close_rate': [0.104969, 0.103541],
'sell_reason': [SellType.ROI, SellType.ROI]
})
result2 = pd.DataFrame({'pair': ['XRP/BTC', 'LTC/BTC', 'ETH/BTC'],
'profit_ratio': [0.03, 0.01, 0.1],
'profit_abs': [0.01, 0.02, 0.2],
'open_date': pd.to_datetime(['2018-01-29 18:40:00',
'2018-01-30 03:30:00',
'2018-01-30 05:30:00'], utc=True
),
'close_date': pd.to_datetime(['2018-01-29 20:45:00',
'2018-01-30 05:35:00',
'2018-01-30 08:30:00'], utc=True),
'trade_duration': [47, 40, 20],
'is_open': [False, False, False],
'stake_amount': [0.01, 0.01, 0.01],
'open_rate': [0.104445, 0.10302485, 0.122541],
'close_rate': [0.104969, 0.103541, 0.123541],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
})
backtestmock = MagicMock(side_effect=[
{
'results': result1,
'config': default_conf,
'locks': [],
'rejected_signals': 20,
'final_balance': 1000,
},
{
'results': result2,
'config': default_conf,
'locks': [],
'rejected_signals': 20,
'final_balance': 1000,
}
])
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['UNITTEST/BTC']))
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--datadir', str(testdatadir),
'--strategy-path', str(Path(__file__).parents[1] / 'strategy/strats'),
'--timeframe', '1m',
'--timerange', '1510694220-1510700340',
'--enable-position-stacking',
'--disable-max-market-positions',
'--breakdown', 'day',
'--strategy-list',
'StrategyTestV2',
'TestStrategyLegacyV1',
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--timeframe detected ... Using timeframe: 1m ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: 1510694220-1510700340 ...',
f'Using data directory: {testdatadir} ...',
'Loading data from 2017-11-14 20:57:00 '
'up to 2017-11-14 22:58:00 (0 days).',
'Backtesting with data from 2017-11-14 21:17:00 '
'up to 2017-11-14 22:58:00 (0 days).',
'Parameter --enable-position-stacking detected ...',
'Running backtesting for Strategy StrategyTestV2',
'Running backtesting for Strategy TestStrategyLegacyV1',
]
for line in exists:
assert log_has(line, caplog)
captured = capsys.readouterr()
assert 'BACKTESTING REPORT' in captured.out
assert 'SELL REASON STATS' in captured.out
assert 'DAY BREAKDOWN' in captured.out
assert 'LEFT OPEN TRADES REPORT' in captured.out
assert '2017-11-14 21:17:00 -> 2017-11-14 22:58:00 | Max open trades : 1' in captured.out
assert 'STRATEGY SUMMARY' in captured.out
@pytest.mark.filterwarnings("ignore:deprecated")
def test_backtest_start_multi_strat_nomock_detail(default_conf, mocker,
caplog, testdatadir, capsys):
# Tests detail-data loading
default_conf.update({
"use_sell_signal": True,
"sell_profit_only": False,
"sell_profit_offset": 0.0,
"ignore_roi_if_buy_signal": False,
})
patch_exchange(mocker)
result1 = pd.DataFrame({'pair': ['XRP/BTC', 'LTC/BTC'],
'profit_ratio': [0.0, 0.0],
'profit_abs': [0.0, 0.0],
'open_date': pd.to_datetime(['2018-01-29 18:40:00',
'2018-01-30 03:30:00', ], utc=True
),
'close_date': pd.to_datetime(['2018-01-29 20:45:00',
'2018-01-30 05:35:00', ], utc=True),
'trade_duration': [235, 40],
'is_open': [False, False],
'stake_amount': [0.01, 0.01],
'open_rate': [0.104445, 0.10302485],
'close_rate': [0.104969, 0.103541],
'sell_reason': [SellType.ROI, SellType.ROI]
})
result2 = pd.DataFrame({'pair': ['XRP/BTC', 'LTC/BTC', 'ETH/BTC'],
'profit_ratio': [0.03, 0.01, 0.1],
'profit_abs': [0.01, 0.02, 0.2],
'open_date': pd.to_datetime(['2018-01-29 18:40:00',
'2018-01-30 03:30:00',
'2018-01-30 05:30:00'], utc=True
),
'close_date': pd.to_datetime(['2018-01-29 20:45:00',
'2018-01-30 05:35:00',
'2018-01-30 08:30:00'], utc=True),
'trade_duration': [47, 40, 20],
'is_open': [False, False, False],
'stake_amount': [0.01, 0.01, 0.01],
'open_rate': [0.104445, 0.10302485, 0.122541],
'close_rate': [0.104969, 0.103541, 0.123541],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
})
backtestmock = MagicMock(side_effect=[
{
'results': result1,
'config': default_conf,
'locks': [],
'rejected_signals': 20,
'final_balance': 1000,
},
{
'results': result2,
'config': default_conf,
'locks': [],
'rejected_signals': 20,
'final_balance': 1000,
}
])
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['XRP/ETH']))
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--datadir', str(testdatadir),
'--strategy-path', str(Path(__file__).parents[1] / 'strategy/strats'),
'--timeframe', '5m',
'--timeframe-detail', '1m',
'--strategy-list',
'StrategyTestV2'
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--timeframe detected ... Using timeframe: 5m ...',
'Parameter --timeframe-detail detected, using 1m for intra-candle backtesting ...',
f'Using data directory: {testdatadir} ...',
'Loading data from 2019-10-11 00:00:00 '
'up to 2019-10-13 11:10:00 (2 days).',
'Backtesting with data from 2019-10-11 01:40:00 '
'up to 2019-10-13 11:10:00 (2 days).',
'Running backtesting for Strategy StrategyTestV2',
]
for line in exists:
assert log_has(line, caplog)
captured = capsys.readouterr()
assert 'BACKTESTING REPORT' in captured.out
assert 'SELL REASON STATS' in captured.out
assert 'LEFT OPEN TRADES REPORT' in captured.out
@pytest.mark.filterwarnings("ignore:deprecated")
@pytest.mark.parametrize('run_id', ['2', 'changed'])
@pytest.mark.parametrize('start_delta', [{'days': 0}, {'days': 1}, {'weeks': 1}, {'weeks': 4}])
@pytest.mark.parametrize('cache', constants.BACKTEST_CACHE_AGE)
def test_backtest_start_multi_strat_caching(default_conf, mocker, caplog, testdatadir, run_id,
start_delta, cache):
default_conf.update({
"use_sell_signal": True,
"sell_profit_only": False,
"sell_profit_offset": 0.0,
"ignore_roi_if_buy_signal": False,
})
patch_exchange(mocker)
backtestmock = MagicMock(return_value={
'results': pd.DataFrame(columns=BT_DATA_COLUMNS),
'config': default_conf,
'locks': [],
'rejected_signals': 20,
'final_balance': 1000,
})
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['UNITTEST/BTC']))
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
mocker.patch('freqtrade.optimize.backtesting.show_backtest_results', MagicMock())
now = min_backtest_date = datetime.now(tz=timezone.utc)
start_time = now - timedelta(**start_delta) + timedelta(hours=1)
if cache == 'none':
min_backtest_date = now + timedelta(days=1)
elif cache == 'day':
min_backtest_date = now - timedelta(days=1)
elif cache == 'week':
min_backtest_date = now - timedelta(weeks=1)
elif cache == 'month':
min_backtest_date = now - timedelta(weeks=4)
load_backtest_metadata = MagicMock(return_value={
'StrategyTestV2': {'run_id': '1', 'backtest_start_time': now.timestamp()},
'TestStrategyLegacyV1': {'run_id': run_id, 'backtest_start_time': start_time.timestamp()}
})
load_backtest_stats = MagicMock(side_effect=[
{
'metadata': {'StrategyTestV2': {'run_id': '1'}},
'strategy': {'StrategyTestV2': {}},
'strategy_comparison': [{'key': 'StrategyTestV2'}]
},
{
'metadata': {'TestStrategyLegacyV1': {'run_id': '2'}},
'strategy': {'TestStrategyLegacyV1': {}},
'strategy_comparison': [{'key': 'TestStrategyLegacyV1'}]
}
])
mocker.patch('pathlib.Path.glob', return_value=[
Path(datetime.strftime(datetime.now(), 'backtest-result-%Y-%m-%d_%H-%M-%S.json'))])
mocker.patch.multiple('freqtrade.data.btanalysis',
load_backtest_metadata=load_backtest_metadata,
load_backtest_stats=load_backtest_stats)
mocker.patch('freqtrade.optimize.backtesting.get_strategy_run_id', side_effect=['1', '2', '2'])
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--datadir', str(testdatadir),
'--strategy-path', str(Path(__file__).parents[1] / 'strategy/strats'),
'--timeframe', '1m',
'--timerange', '1510694220-1510700340',
'--enable-position-stacking',
'--disable-max-market-positions',
'--cache', cache,
'--strategy-list',
'StrategyTestV2',
'TestStrategyLegacyV1',
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--timeframe detected ... Using timeframe: 1m ...',
'Parameter --timerange detected: 1510694220-1510700340 ...',
f'Using data directory: {testdatadir} ...',
'Loading data from 2017-11-14 20:57:00 '
'up to 2017-11-14 22:58:00 (0 days).',
'Parameter --enable-position-stacking detected ...',
]
for line in exists:
assert log_has(line, caplog)
if cache == 'none':
assert backtestmock.call_count == 2
exists = [
'Running backtesting for Strategy StrategyTestV2',
'Running backtesting for Strategy TestStrategyLegacyV1',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:58:00 (0 days).',
]
elif run_id == '2' and min_backtest_date < start_time:
assert backtestmock.call_count == 0
exists = [
'Reusing result of previous backtest for StrategyTestV2',
'Reusing result of previous backtest for TestStrategyLegacyV1',
]
else:
exists = [
'Reusing result of previous backtest for StrategyTestV2',
'Running backtesting for Strategy TestStrategyLegacyV1',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:58:00 (0 days).',
]
assert backtestmock.call_count == 1
for line in exists:
assert log_has(line, caplog)
def test_get_strategy_run_id(default_conf_usdt):
default_conf_usdt.update({
'strategy': 'StrategyTestV2',
'max_open_trades': float('inf')
})
strategy = StrategyResolver.load_strategy(default_conf_usdt)
x = get_strategy_run_id(strategy)
assert isinstance(x, str)