stable/freqtrade/plot/plotting.py
2021-05-30 16:39:33 +01:00

606 lines
22 KiB
Python

import logging
from pathlib import Path
from typing import Any, Dict, List
import pandas as pd
from freqtrade.configuration import TimeRange
from freqtrade.data.btanalysis import (calculate_max_drawdown, combine_dataframes_with_mean,
create_cum_profit, extract_trades_of_period, load_trades)
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.data.history import get_timerange, load_data
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_prev_date, timeframe_to_seconds
from freqtrade.misc import pair_to_filename
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.strategy import IStrategy
logger = logging.getLogger(__name__)
try:
import plotly.graph_objects as go
from plotly.offline import plot
from plotly.subplots import make_subplots
except ImportError:
logger.exception("Module plotly not found \n Please install using `pip3 install plotly`")
exit(1)
def init_plotscript(config, markets: List, startup_candles: int = 0):
"""
Initialize objects needed for plotting
:return: Dict with candle (OHLCV) data, trades and pairs
"""
if "pairs" in config:
pairs = expand_pairlist(config['pairs'], markets)
else:
pairs = expand_pairlist(config['exchange']['pair_whitelist'], markets)
# Set timerange to use
timerange = TimeRange.parse_timerange(config.get('timerange'))
data = load_data(
datadir=config.get('datadir'),
pairs=pairs,
timeframe=config.get('timeframe', '5m'),
timerange=timerange,
startup_candles=startup_candles,
data_format=config.get('dataformat_ohlcv', 'json'),
)
if startup_candles and data:
min_date, max_date = get_timerange(data)
logger.info(f"Loading data from {min_date} to {max_date}")
timerange.adjust_start_if_necessary(timeframe_to_seconds(config.get('timeframe', '5m')),
startup_candles, min_date)
no_trades = False
filename = config.get('exportfilename')
if config.get('no_trades', False):
no_trades = True
elif config['trade_source'] == 'file':
if not filename.is_dir() and not filename.is_file():
logger.warning("Backtest file is missing skipping trades.")
no_trades = True
try:
trades = load_trades(
config['trade_source'],
db_url=config.get('db_url'),
exportfilename=filename,
no_trades=no_trades,
strategy=config.get('strategy'),
)
except ValueError as e:
raise OperationalException(e) from e
if not trades.empty:
trades = trim_dataframe(trades, timerange, 'open_date')
return {"ohlcv": data,
"trades": trades,
"pairs": pairs,
"timerange": timerange,
}
def add_indicators(fig, row, indicators: Dict[str, Dict], data: pd.DataFrame) -> make_subplots:
"""
Generate all the indicators selected by the user for a specific row, based on the configuration
:param fig: Plot figure to append to
:param row: row number for this plot
:param indicators: Dict of Indicators with configuration options.
Dict key must correspond to dataframe column.
:param data: candlestick DataFrame
"""
plot_kinds = {
'scatter': go.Scatter,
'bar': go.Bar,
}
for indicator, conf in indicators.items():
logger.debug(f"indicator {indicator} with config {conf}")
if indicator in data:
kwargs = {'x': data['date'],
'y': data[indicator].values,
'name': indicator
}
plot_type = conf.get('type', 'scatter')
color = conf.get('color')
if plot_type == 'bar':
kwargs.update({'marker_color': color or 'DarkSlateGrey',
'marker_line_color': color or 'DarkSlateGrey'})
else:
if color:
kwargs.update({'line': {'color': color}})
kwargs['mode'] = 'lines'
if plot_type != 'scatter':
logger.warning(f'Indicator {indicator} has unknown plot trace kind {plot_type}'
f', assuming "scatter".')
kwargs.update(conf.get('plotly', {}))
trace = plot_kinds[plot_type](**kwargs)
fig.add_trace(trace, row, 1)
else:
logger.info(
'Indicator "%s" ignored. Reason: This indicator is not found '
'in your strategy.',
indicator
)
return fig
def add_profit(fig, row, data: pd.DataFrame, column: str, name: str) -> make_subplots:
"""
Add profit-plot
:param fig: Plot figure to append to
:param row: row number for this plot
:param data: candlestick DataFrame
:param column: Column to use for plot
:param name: Name to use
:return: fig with added profit plot
"""
profit = go.Scatter(
x=data.index,
y=data[column],
name=name,
)
fig.add_trace(profit, row, 1)
return fig
def add_max_drawdown(fig, row, trades: pd.DataFrame, df_comb: pd.DataFrame,
timeframe: str) -> make_subplots:
"""
Add scatter points indicating max drawdown
"""
try:
max_drawdown, highdate, lowdate, _, _ = calculate_max_drawdown(trades)
drawdown = go.Scatter(
x=[highdate, lowdate],
y=[
df_comb.loc[timeframe_to_prev_date(timeframe, highdate), 'cum_profit'],
df_comb.loc[timeframe_to_prev_date(timeframe, lowdate), 'cum_profit'],
],
mode='markers',
name=f"Max drawdown {max_drawdown * 100:.2f}%",
text=f"Max drawdown {max_drawdown * 100:.2f}%",
marker=dict(
symbol='square-open',
size=9,
line=dict(width=2),
color='green'
)
)
fig.add_trace(drawdown, row, 1)
except ValueError:
logger.warning("No trades found - not plotting max drawdown.")
return fig
def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
"""
Add trades to "fig"
"""
# Trades can be empty
if trades is not None and len(trades) > 0:
# Create description for sell summarizing the trade
trades['desc'] = trades.apply(lambda row: f"{round(row['profit_ratio'] * 100, 1)}%, "
f"{row['sell_reason']}, "
f"{row['trade_duration']} min",
axis=1)
trade_buys = go.Scatter(
x=trades["open_date"],
y=trades["open_rate"],
mode='markers',
name='Trade buy',
text=trades["desc"],
marker=dict(
symbol='circle-open',
size=11,
line=dict(width=2),
color='cyan'
)
)
trade_sells = go.Scatter(
x=trades.loc[trades['profit_ratio'] > 0, "close_date"],
y=trades.loc[trades['profit_ratio'] > 0, "close_rate"],
text=trades.loc[trades['profit_ratio'] > 0, "desc"],
mode='markers',
name='Sell - Profit',
marker=dict(
symbol='square-open',
size=11,
line=dict(width=2),
color='green'
)
)
trade_sells_loss = go.Scatter(
x=trades.loc[trades['profit_ratio'] <= 0, "close_date"],
y=trades.loc[trades['profit_ratio'] <= 0, "close_rate"],
text=trades.loc[trades['profit_ratio'] <= 0, "desc"],
mode='markers',
name='Sell - Loss',
marker=dict(
symbol='square-open',
size=11,
line=dict(width=2),
color='red'
)
)
fig.add_trace(trade_buys, 1, 1)
fig.add_trace(trade_sells, 1, 1)
fig.add_trace(trade_sells_loss, 1, 1)
else:
logger.warning("No trades found.")
return fig
def create_plotconfig(indicators1: List[str], indicators2: List[str],
plot_config: Dict[str, Dict]) -> Dict[str, Dict]:
"""
Combines indicators 1 and indicators 2 into plot_config if necessary
:param indicators1: List containing Main plot indicators
:param indicators2: List containing Sub plot indicators
:param plot_config: Dict of Dicts containing advanced plot configuration
:return: plot_config - eventually with indicators 1 and 2
"""
if plot_config:
if indicators1:
plot_config['main_plot'] = {ind: {} for ind in indicators1}
if indicators2:
plot_config['subplots'] = {'Other': {ind: {} for ind in indicators2}}
if not plot_config:
# If no indicators and no plot-config given, use defaults.
if not indicators1:
indicators1 = ['sma', 'ema3', 'ema5']
if not indicators2:
indicators2 = ['macd', 'macdsignal']
# Create subplot configuration if plot_config is not available.
plot_config = {
'main_plot': {ind: {} for ind in indicators1},
'subplots': {'Other': {ind: {} for ind in indicators2}},
}
if 'main_plot' not in plot_config:
plot_config['main_plot'] = {}
if 'subplots' not in plot_config:
plot_config['subplots'] = {}
return plot_config
def plot_area(fig, row: int, data: pd.DataFrame, indicator_a: str,
indicator_b: str, label: str = "",
fill_color: str = "rgba(0,176,246,0.2)") -> make_subplots:
""" Creates a plot for the area between two traces and adds it to fig.
:param fig: Plot figure to append to
:param row: row number for this plot
:param data: candlestick DataFrame
:param indicator_a: indicator name as populated in stragetie
:param indicator_b: indicator name as populated in stragetie
:param label: label for the filled area
:param fill_color: color to be used for the filled area
:return: fig with added filled_traces plot
"""
if indicator_a in data and indicator_b in data:
# make lines invisible to get the area plotted, only.
line = {'color': 'rgba(255,255,255,0)'}
# TODO: Figure out why scattergl causes problems plotly/plotly.js#2284
trace_a = go.Scatter(x=data.date, y=data[indicator_a],
showlegend=False,
line=line)
trace_b = go.Scatter(x=data.date, y=data[indicator_b], name=label,
fill="tonexty", fillcolor=fill_color,
line=line)
fig.add_trace(trace_a, row, 1)
fig.add_trace(trace_b, row, 1)
return fig
def add_areas(fig, row: int, data: pd.DataFrame, indicators) -> make_subplots:
""" Adds all area plots (specified in plot_config) to fig.
:param fig: Plot figure to append to
:param row: row number for this plot
:param data: candlestick DataFrame
:param indicators: dict with indicators. ie.: plot_config['main_plot'] or
plot_config['subplots'][subplot_label]
:return: fig with added filled_traces plot
"""
for indicator, ind_conf in indicators.items():
if 'fill_to' in ind_conf:
indicator_b = ind_conf['fill_to']
if indicator in data and indicator_b in data:
label = ind_conf.get('fill_label',
f'{indicator}<>{indicator_b}')
fill_color = ind_conf.get('fill_color', 'rgba(0,176,246,0.2)')
fig = plot_area(fig, row, data, indicator, indicator_b,
label=label, fill_color=fill_color)
elif indicator not in data:
logger.info(
'Indicator "%s" ignored. Reason: This indicator is not '
'found in your strategy.', indicator
)
elif indicator_b not in data:
logger.info(
'fill_to: "%s" ignored. Reason: This indicator is not '
'in your strategy.', indicator_b
)
return fig
def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFrame = None, *,
indicators1: List[str] = [],
indicators2: List[str] = [],
plot_config: Dict[str, Dict] = {},
) -> go.Figure:
"""
Generate the graph from the data generated by Backtesting or from DB
Volume will always be ploted in row2, so Row 1 and 3 are to our disposal for custom indicators
:param pair: Pair to Display on the graph
:param data: OHLCV DataFrame containing indicators and buy/sell signals
:param trades: All trades created
:param indicators1: List containing Main plot indicators
:param indicators2: List containing Sub plot indicators
:param plot_config: Dict of Dicts containing advanced plot configuration
:return: Plotly figure
"""
plot_config = create_plotconfig(indicators1, indicators2, plot_config)
rows = 2 + len(plot_config['subplots'])
row_widths = [1 for _ in plot_config['subplots']]
# Define the graph
fig = make_subplots(
rows=rows,
cols=1,
shared_xaxes=True,
row_width=row_widths + [1, 4],
vertical_spacing=0.0001,
)
fig['layout'].update(title=pair)
fig['layout']['yaxis1'].update(title='Price')
fig['layout']['yaxis2'].update(title='Volume')
for i, name in enumerate(plot_config['subplots']):
fig['layout'][f'yaxis{3 + i}'].update(title=name)
fig['layout']['xaxis']['rangeslider'].update(visible=False)
# Common information
candles = go.Candlestick(
x=data.date,
open=data.open,
high=data.high,
low=data.low,
close=data.close,
name='Price'
)
fig.add_trace(candles, 1, 1)
if 'buy' in data.columns:
df_buy = data[data['buy'] == 1]
if len(df_buy) > 0:
buys = go.Scatter(
x=df_buy.date,
y=df_buy.close,
mode='markers',
name='buy',
marker=dict(
symbol='triangle-up-dot',
size=9,
line=dict(width=1),
color='green',
)
)
fig.add_trace(buys, 1, 1)
else:
logger.warning("No buy-signals found.")
if 'sell' in data.columns:
df_sell = data[data['sell'] == 1]
if len(df_sell) > 0:
sells = go.Scatter(
x=df_sell.date,
y=df_sell.close,
mode='markers',
name='sell',
marker=dict(
symbol='triangle-down-dot',
size=9,
line=dict(width=1),
color='red',
)
)
fig.add_trace(sells, 1, 1)
else:
logger.warning("No sell-signals found.")
# Add Bollinger Bands
fig = plot_area(fig, 1, data, 'bb_lowerband', 'bb_upperband',
label="Bollinger Band")
# prevent bb_lower and bb_upper from plotting
try:
del plot_config['main_plot']['bb_lowerband']
del plot_config['main_plot']['bb_upperband']
except KeyError:
pass
# main plot goes to row 1
fig = add_indicators(fig=fig, row=1, indicators=plot_config['main_plot'], data=data)
fig = add_areas(fig, 1, data, plot_config['main_plot'])
fig = plot_trades(fig, trades)
# sub plot: Volume goes to row 2
volume = go.Bar(
x=data['date'],
y=data['volume'],
name='Volume',
marker_color='DarkSlateGrey',
marker_line_color='DarkSlateGrey'
)
fig.add_trace(volume, 2, 1)
# add each sub plot to a separate row
for i, label in enumerate(plot_config['subplots']):
sub_config = plot_config['subplots'][label]
row = 3 + i
fig = add_indicators(fig=fig, row=row, indicators=sub_config,
data=data)
# fill area between indicators ( 'fill_to': 'other_indicator')
fig = add_areas(fig, row, data, sub_config)
return fig
def generate_profit_graph(pairs: str, data: Dict[str, pd.DataFrame],
trades: pd.DataFrame, timeframe: str, stake_currency: str) -> go.Figure:
# Combine close-values for all pairs, rename columns to "pair"
df_comb = combine_dataframes_with_mean(data, "close")
# Trim trades to available OHLCV data
trades = extract_trades_of_period(df_comb, trades, date_index=True)
if len(trades) == 0:
raise OperationalException('No trades found in selected timerange.')
# Add combined cumulative profit
df_comb = create_cum_profit(df_comb, trades, 'cum_profit', timeframe)
# Plot the pairs average close prices, and total profit growth
avgclose = go.Scatter(
x=df_comb.index,
y=df_comb['mean'],
name='Avg close price',
)
fig = make_subplots(rows=3, cols=1, shared_xaxes=True,
row_width=[1, 1, 1],
vertical_spacing=0.05,
subplot_titles=["AVG Close Price", "Combined Profit", "Profit per pair"])
fig['layout'].update(title="Freqtrade Profit plot")
fig['layout']['yaxis1'].update(title='Price')
fig['layout']['yaxis2'].update(title=f'Profit {stake_currency}')
fig['layout']['yaxis3'].update(title=f'Profit {stake_currency}')
fig['layout']['xaxis']['rangeslider'].update(visible=False)
fig.add_trace(avgclose, 1, 1)
fig = add_profit(fig, 2, df_comb, 'cum_profit', 'Profit')
fig = add_max_drawdown(fig, 2, trades, df_comb, timeframe)
for pair in pairs:
profit_col = f'cum_profit_{pair}'
try:
df_comb = create_cum_profit(df_comb, trades[trades['pair'] == pair], profit_col,
timeframe)
fig = add_profit(fig, 3, df_comb, profit_col, f"Profit {pair}")
except ValueError:
pass
return fig
def generate_plot_filename(pair: str, timeframe: str) -> str:
"""
Generate filenames per pair/timeframe to be used for storing plots
"""
pair_s = pair_to_filename(pair)
file_name = 'freqtrade-plot-' + pair_s + '-' + timeframe + '.html'
logger.info('Generate plot file for %s', pair)
return file_name
def store_plot_file(fig, filename: str, directory: Path, auto_open: bool = False) -> None:
"""
Generate a plot html file from pre populated fig plotly object
:param fig: Plotly Figure to plot
:param filename: Name to store the file as
:param directory: Directory to store the file in
:param auto_open: Automatically open files saved
:return: None
"""
directory.mkdir(parents=True, exist_ok=True)
_filename = directory.joinpath(filename)
plot(fig, filename=str(_filename),
auto_open=auto_open)
logger.info(f"Stored plot as {_filename}")
def load_and_plot_trades(config: Dict[str, Any]):
"""
From configuration provided
- Initializes plot-script
- Get candle (OHLCV) data
- Generate Dafaframes populated with indicators and signals based on configured strategy
- Load trades excecuted during the selected period
- Generate Plotly plot objects
- Generate plot files
:return: None
"""
strategy = StrategyResolver.load_strategy(config)
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config)
IStrategy.dp = DataProvider(config, exchange)
plot_elements = init_plotscript(config, list(exchange.markets), strategy.startup_candle_count)
timerange = plot_elements['timerange']
trades = plot_elements['trades']
pair_counter = 0
for pair, data in plot_elements["ohlcv"].items():
pair_counter += 1
logger.info("analyse pair %s", pair)
df_analyzed = strategy.analyze_ticker(data, {'pair': pair})
df_analyzed = trim_dataframe(df_analyzed, timerange)
if not trades.empty:
trades_pair = trades.loc[trades['pair'] == pair]
trades_pair = extract_trades_of_period(df_analyzed, trades_pair)
else:
trades_pair = trades
fig = generate_candlestick_graph(
pair=pair,
data=df_analyzed,
trades=trades_pair,
indicators1=config.get('indicators1', []),
indicators2=config.get('indicators2', []),
plot_config=strategy.plot_config if hasattr(strategy, 'plot_config') else {}
)
store_plot_file(fig, filename=generate_plot_filename(pair, config['timeframe']),
directory=config['user_data_dir'] / 'plot')
logger.info('End of plotting process. %s plots generated', pair_counter)
def plot_profit(config: Dict[str, Any]) -> None:
"""
Plots the total profit for all pairs.
Note, the profit calculation isn't realistic.
But should be somewhat proportional, and therefor useful
in helping out to find a good algorithm.
"""
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config)
plot_elements = init_plotscript(config, list(exchange.markets))
trades = plot_elements['trades']
# Filter trades to relevant pairs
# Remove open pairs - we don't know the profit yet so can't calculate profit for these.
# Also, If only one open pair is left, then the profit-generation would fail.
trades = trades[(trades['pair'].isin(plot_elements['pairs']))
& (~trades['close_date'].isnull())
]
if len(trades) == 0:
raise OperationalException("No trades found, cannot generate Profit-plot without "
"trades from either Backtest result or database.")
# Create an average close price of all the pairs that were involved.
# this could be useful to gauge the overall market trend
fig = generate_profit_graph(plot_elements['pairs'], plot_elements['ohlcv'],
trades, config.get('timeframe', '5m'),
config.get('stake_currency', ''))
store_plot_file(fig, filename='freqtrade-profit-plot.html',
directory=config['user_data_dir'] / 'plot', auto_open=True)