stable/freqtrade/commands/automation_commands.py

279 lines
12 KiB
Python

import ast
import logging
from pathlib import Path
from typing import Any, Dict
from freqtrade.constants import (USERPATH_HYPEROPTS,
USERPATH_STRATEGIES,
POSSIBLE_GUARDS,
POSSIBLE_TRIGGERS,
POSSIBLE_AIMS)
from freqtrade.exceptions import OperationalException
from freqtrade.state import RunMode
from freqtrade.configuration import setup_utils_configuration
from freqtrade.misc import render_template
logger = logging.getLogger(__name__)
# ---------------------------------------------------extract-strategy------------------------------------------------------
def extract_dicts(strategypath: Path):
# store the file in a list for reference
stored_file = []
with open(strategypath) as file:
for line in file:
stored_file.append(line)
# find the start and end of buy trend
for position, line in enumerate(stored_file):
if "populate_buy_trend(" in line:
start_buy_number = position
elif "populate_sell_trend(" in line:
end_buy_number = position
# list the numbers between the start and end of buy trend
buy_lines = []
for i in range(start_buy_number, end_buy_number):
buy_lines.append(i)
# populate the indicators dictionaries with indicators attached to the line they are on
buyindicators = {}
sellindicators = {}
for position, line in enumerate(stored_file):
# check the lines in buy trend for indicator and add them
if position in buy_lines and "(dataframe['" in line:
# use split twice to remove the context around the indicator
back_of_line = line.split("(dataframe['", 1)[1]
buyindicator = back_of_line.split("'] ", 1)[0]
buyindicators[buyindicator] = position
# check the lines in sell trend for indicator and add them
elif position > end_buy_number and "(dataframe['" in line:
# use split twice to remove the context around the indicator
back_of_line = line.split("(dataframe['", 1)[1]
sellindicator = back_of_line.split("'] ", 1)[0]
sellindicators[sellindicator] = position
# build the final buy dictionary
buy_dict = {}
for indicator in buyindicators:
# find the corrosponding aim
for position, line in enumerate(stored_file):
if position == buyindicators[indicator]:
# use split twice to remove the context around the indicator
back_of_line = line.split(f"(dataframe['{indicator}'] ", 1)[1]
aim = back_of_line.split()[0]
buy_dict[indicator] = aim
# build the final sell dictionary
sell_dict = {}
for indicator in sellindicators:
# find the corrosponding aim
for position, line in enumerate(stored_file):
if position == sellindicators[indicator]:
# use split twice to remove the context around the indicator
back_of_line = line.split(f"(dataframe['{indicator}'] ", 1)[1]
aim = back_of_line.split()[0]
sell_dict[indicator] = aim
# put the final dicts into a tuple
final_dicts = (buy_dict, sell_dict)
return final_dicts
def start_extract_strategy(args: Dict[str, Any]) -> None:
"""
Check if the right subcommands where passed and start extracting the strategy data
"""
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
# check if all required options are filled in
if not 'strategy' in args or not args['strategy']:
raise OperationalException("`extract-strategy` requires --strategy to be set.")
else:
# if the name is not specified use (strategy)_extract
if not 'extract_name' in args or not args['extract_name']:
args['extract_name'] = args['strategy'] + "_extract"
new_path = config['user_data_dir'] / USERPATH_STRATEGIES / (args['extract_name'] + '.txt')
if new_path.exists():
raise OperationalException(f"`{new_path}` already exists. "
"Please choose another name.")
# the path of the chosen strategy
strategy_path = config['user_data_dir'] / USERPATH_STRATEGIES / (args['strategy'] + '.py')
# extract the buy and sell indicators as dicts
extracted_dicts = str(extract_dicts(strategy_path))
# save the dicts in a file
logger.info(f"Writing custom hyperopt to `{new_path}`.")
new_path.write_text(extracted_dicts)
# --------------------------------------------------custom-hyperopt------------------------------------------------------
'''
TODO
-make the code below more dynamic with a large list of indicators and aims
-buy_space integer values variation based on aim(later deep learning)
-add --mode , see notes
-when making the strategy reading tool, make sure that the populate indicators gets copied to here
-Custom stoploss and roi
-cli option to read extracted strategies files (--extraction)
'''
def custom_hyperopt_buyelements(buy_indicators: Dict[str, str]):
"""
Build the arguments with the placefillers for the buygenerator
"""
buy_guards = ""
buy_triggers = ""
buy_space = ""
for indicator in buy_indicators:
# Error handling
if not indicator in POSSIBLE_GUARDS and not indicator in POSSIBLE_TRIGGERS:
raise OperationalException(
f"`{indicator}` is not part of the available indicators. The current options are {POSSIBLE_GUARDS + POSSIBLE_TRIGGERS}.")
elif not buy_indicators[indicator] in POSSIBLE_AIMS:
raise OperationalException(
f"`{buy_indicators[indicator]}` is not part of the available indicator options. The current options are {POSSIBLE_AIMS}.")
# If the indicator is a guard
elif indicator in POSSIBLE_GUARDS:
# get the symbol corrosponding to the value
aim = POSSIBLE_AIMS[buy_indicators[indicator]]
# add the guard to its argument
buy_guards += f"if '{indicator}-enabled' in params and params['{indicator}-enabled']: conditions.append(dataframe['{indicator}'] {aim} params['{indicator}-value'])"
# add the space to its argument
buy_space += f"Integer(10, 90, name='{indicator}-value'), Categorical([True, False], name='{indicator}-enabled'),"
# If the indicator is a trigger
elif indicator in POSSIBLE_TRIGGERS:
# get the symbol corrosponding to the value
aim = POSSIBLE_AIMS[buy_indicators[indicator]]
# add the trigger to its argument
buy_triggers += f"if params['trigger'] == '{indicator}': conditions.append(dataframe['{indicator}'] {aim} dataframe['close'])"
# Final line of indicator space makes all triggers
buy_space += "Categorical(["
# adding all triggers to the list
for indicator in buy_indicators:
if indicator in POSSIBLE_TRIGGERS:
buy_space += f"'{indicator}', "
# Deleting the last ", "
buy_space = buy_space[:-2]
buy_space += "], name='trigger')"
return {"buy_guards": buy_guards, "buy_triggers": buy_triggers, "buy_space": buy_space}
def custom_hyperopt_sellelements(sell_indicators: Dict[str, str]):
"""
Build the arguments with the placefillers for the sellgenerator
"""
sell_guards = ""
sell_triggers = ""
sell_space = ""
for indicator in sell_indicators:
# Error handling
if not indicator in POSSIBLE_GUARDS and not indicator in POSSIBLE_TRIGGERS:
raise OperationalException(
f"`{indicator}` is not part of the available indicators. The current options are {POSSIBLE_GUARDS + POSSIBLE_TRIGGERS}.")
elif not sell_indicators[indicator] in POSSIBLE_AIMS:
raise OperationalException(
f"`{sell_indicators[indicator]}` is not part of the available indicator options. The current options are {POSSIBLE_AIMS}.")
# If indicator is a guard
elif indicator in POSSIBLE_GUARDS:
# get the symbol corrosponding to the value
aim = POSSIBLE_AIMS[sell_indicators[indicator]]
# add the guard to its argument
sell_guards += f"if '{indicator}-enabled' in params and params['sell-{indicator}-enabled']: conditions.append(dataframe['{indicator}'] {aim} params['sell-{indicator}-value'])"
# add the space to its argument
sell_space += f"Integer(10, 90, name='sell-{indicator}-value'), Categorical([True, False], name='sell-{indicator}-enabled'),"
# If the indicator is a trigger
elif indicator in POSSIBLE_TRIGGERS:
# get the symbol corrosponding to the value
aim = POSSIBLE_AIMS[sell_indicators[indicator]]
# add the trigger to its argument
sell_triggers += f"if params['sell-trigger'] == 'sell-{indicator}': conditions.append(dataframe['{indicator}'] {aim} dataframe['close'])"
# Final line of indicator space makes all triggers
sell_space += "Categorical(["
# Adding all triggers to the list
for indicator in sell_indicators:
if indicator in POSSIBLE_TRIGGERS:
sell_space += f"'sell-{indicator}', "
# Deleting the last ", "
sell_space = sell_space[:-2]
sell_space += "], name='trigger')"
return {"sell_guards": sell_guards, "sell_triggers": sell_triggers, "sell_space": sell_space}
def deploy_custom_hyperopt(hyperopt_name: str, hyperopt_path: Path, buy_indicators: Dict[str, str], sell_indicators: Dict[str, str]) -> None:
"""
Deploys a custom hyperopt template to hyperopt_path
"""
# Build the arguments for the buy and sell generators
buy_args = custom_hyperopt_buyelements(buy_indicators)
sell_args = custom_hyperopt_sellelements(sell_indicators)
# Build the final template
strategy_text = render_template(templatefile='base_hyperopt.py.j2',
arguments={"hyperopt": hyperopt_name,
"buy_guards": buy_args["buy_guards"],
"buy_triggers": buy_args["buy_triggers"],
"buy_space": buy_args["buy_space"],
"sell_guards": sell_args["sell_guards"],
"sell_triggers": sell_args["sell_triggers"],
"sell_space": sell_args["sell_space"],
})
logger.info(f"Writing custom hyperopt to `{hyperopt_path}`.")
hyperopt_path.write_text(strategy_text)
def start_custom_hyperopt(args: Dict[str, Any]) -> None:
"""
Check if the right subcommands where passed and start building the hyperopt
"""
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if not 'hyperopt' in args or not args['hyperopt']:
raise OperationalException("`custom-hyperopt` requires --hyperopt to be set.")
elif not 'buy_indicators' in args or not args['buy_indicators']:
raise OperationalException("`custom-hyperopt` requires --buy-indicators to be set.")
elif not 'sell_indicators' in args or not args['sell_indicators']:
raise OperationalException("`custom-hyperopt` requires --sell-indicators to be set.")
else:
if args['hyperopt'] == 'DefaultHyperopt':
raise OperationalException("DefaultHyperopt is not allowed as name.")
new_path = config['user_data_dir'] / USERPATH_HYPEROPTS / (args['hyperopt'] + '.py')
if new_path.exists():
raise OperationalException(f"`{new_path}` already exists. "
"Please choose another Hyperopt Name.")
buy_indicators = ast.literal_eval(args['buy_indicators'])
sell_indicators = ast.literal_eval(args['sell_indicators'])
deploy_custom_hyperopt(args['hyperopt'], new_path,
buy_indicators, sell_indicators)
# --------------------------------------------------build-hyperopt------------------------------------------------------