302 lines
13 KiB
Python
302 lines
13 KiB
Python
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
|
# isort: skip_file
|
|
# --- Do not remove these libs ---
|
|
import numpy as np # noqa
|
|
import pandas as pd # noqa
|
|
from pandas import DataFrame
|
|
from talib._ta_lib import ULTOSC, MACD, SAR, LINEARREG_ANGLE, TEMA, STOCHRSI, STOCH, STOCHF, RSI
|
|
|
|
from freqtrade.strategy.interface import IStrategy
|
|
|
|
# --------------------------------
|
|
# Add your lib to import here
|
|
import talib.abstract as ta
|
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
|
|
|
|
|
# This class is a sample. Feel free to customize it.
|
|
class macd_ethbtc_1m(IStrategy):
|
|
"""
|
|
This is a sample strategy to inspire you.
|
|
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md
|
|
|
|
You can:
|
|
:return: a Dataframe with all mandatory indicators for the strategies
|
|
- Rename the class name (Do not forget to update class_name)
|
|
- Add any methods you want to build your strategy
|
|
- Add any lib you need to build your strategy
|
|
|
|
You must keep:
|
|
- the lib in the section "Do not remove these libs"
|
|
- the prototype for the methods: minimal_roi, stoploss, populate_indicators, populate_buy_trend,
|
|
populate_sell_trend, hyperopt_space, buy_strategy_generator
|
|
"""
|
|
# Strategy interface version - allow new iterations of the strategy interface.
|
|
# Check the documentation or the Sample strategy to get the latest version.
|
|
INTERFACE_VERSION = 1
|
|
|
|
# Minimal ROI designed for the strategy.
|
|
# This attribute will be overridden if the config file contains "minimal_roi".
|
|
minimal_roi = {
|
|
"0": 0.04025819697656752,
|
|
"7": 0.015188707936204564,
|
|
"18": 0.005472487470606337,
|
|
"41": 0
|
|
}
|
|
|
|
# Optimal stoploss designed for the strategy.
|
|
# This attribute will be overridden if the config file contains "stoploss".
|
|
stoploss = -0.33515742514178193
|
|
|
|
# Trailing stoploss
|
|
trailing_stop = False
|
|
trailing_stop_positive = 0.34089
|
|
trailing_stop_positive_offset = 0.43254
|
|
trailing_only_offset_is_reached = False
|
|
|
|
# Optimal ticker interval for the strategy.
|
|
timeframe = '1m'
|
|
|
|
# Run "populate_indicators()" only for new candle.
|
|
process_only_new_candles = False
|
|
|
|
# These values can be overridden in the "ask_strategy" section in the config.
|
|
use_sell_signal = True
|
|
sell_profit_only = True
|
|
ignore_roi_if_buy_signal = False
|
|
|
|
# Number of candles the strategy requires before producing valid signals
|
|
startup_candle_count: int = 30
|
|
|
|
# Optional order type mapping.
|
|
order_types = {
|
|
'buy': 'market',
|
|
'sell': 'market',
|
|
'stoploss': 'market',
|
|
'stoploss_on_exchange': False
|
|
}
|
|
|
|
# Optional order time in force.
|
|
order_time_in_force = {
|
|
'buy': 'gtc',
|
|
'sell': 'gtc'
|
|
}
|
|
|
|
plot_config = {
|
|
'main_plot': {
|
|
'close': {},
|
|
'sar': {'color': 'white'},
|
|
},
|
|
'subplots': {
|
|
"MACD": {
|
|
'macd': {'color': 'blue'},
|
|
'macdsignal': {'color': 'orange'},
|
|
},
|
|
"OU": {
|
|
'ou': {'color': 'red'},
|
|
}
|
|
}
|
|
}
|
|
|
|
def informative_pairs(self):
|
|
"""
|
|
Define additional, informative pair/interval combinations to be cached from the exchange.
|
|
These pair/interval combinations are non-tradeable, unless they are part
|
|
of the whitelist as well.
|
|
For more information, please consult the documentation
|
|
:return: List of tuples in the format (pair, interval)
|
|
Sample: return [("ETH/USDT", "5m"),
|
|
("BTC/USDT", "15m"),
|
|
]
|
|
"""
|
|
return [("ETH/BTC", "1m")]
|
|
|
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Adds several different TA indicators to the given DataFrame
|
|
Performance Note: For the best performance be frugal on the number of indicators
|
|
you are using. Let uncomment only the indicator you are using in your strategies
|
|
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
|
:param dataframe: Dataframe with data from the exchange
|
|
:param metadata: Additional information, like the currently traded pair
|
|
:return: a Dataframe with all mandatory indicators for the strategies
|
|
"""
|
|
|
|
# MACD
|
|
dataframe['macd'], dataframe['macdsignal'], dataframe['macdhist'] = MACD(dataframe['close'], fastperiod=12,
|
|
slowperiod=26, signalperiod=9)
|
|
dataframe['macd_angle'] = LINEARREG_ANGLE(dataframe['macd'], timeperiod=3)
|
|
dataframe['macdhist_angle'] = LINEARREG_ANGLE(dataframe['macd'], timeperiod=3)
|
|
|
|
|
|
# Parabolic SAR
|
|
dataframe['sar'] = SAR(dataframe['high'], dataframe['low'], acceleration=0, maximum=0)
|
|
dataframe['sar_angle'] = LINEARREG_ANGLE(dataframe['sar'], timeperiod=3)
|
|
|
|
# Linear angle
|
|
dataframe['angle'] = LINEARREG_ANGLE(dataframe['close'], timeperiod=14)
|
|
|
|
dataframe['tema'] = TEMA(dataframe['close'], timeperiod=30)
|
|
dataframe['sr_fastk'], dataframe['sr_fastd'] = STOCHRSI(dataframe['close'], timeperiod=14, fastk_period=5,
|
|
fastd_period=3, fastd_matype=0)
|
|
dataframe['sr_fastd_angle'] = LINEARREG_ANGLE(dataframe['sr_fastd'], timeperiod=4)
|
|
|
|
dataframe['slowk'], dataframe['slowd'] = STOCH(dataframe['high'], dataframe['low'], dataframe['close'],
|
|
fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3,
|
|
slowd_matype=0)
|
|
dataframe['slowd_angle'] = LINEARREG_ANGLE(dataframe['slowd'], timeperiod=3)
|
|
dataframe['sf_fastk'], dataframe['sf_fastd'] = STOCHF(dataframe['high'], dataframe['low'], dataframe['close'], fastk_period=5, fastd_period=3, fastd_matype=0)
|
|
dataframe['sf_fastd_angle'] = LINEARREG_ANGLE(dataframe['sf_fastd'], timeperiod=3)
|
|
|
|
dataframe['rsi'] = RSI(dataframe['close'], timeperiod=14)
|
|
dataframe['rsi_angle'] = LINEARREG_ANGLE(dataframe['rsi'], timeperiod=5)
|
|
|
|
|
|
# # first check if dataprovider is available
|
|
# if self.dp:
|
|
# if self.dp.runmode in ('live', 'dry_run'):
|
|
# ob = self.dp.orderbook(metadata['pair'], 1)
|
|
# dataframe['best_bid'] = ob['bids'][0][0]
|
|
# dataframe['best_ask'] = ob['asks'][0][0]
|
|
#
|
|
return dataframe
|
|
|
|
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Based on TA indicators, populates the buy signal for the given dataframe
|
|
:param dataframe: DataFrame populated with indicators
|
|
:param metadata: Additional information, like the currently traded pair
|
|
:return: DataFrame with buy column
|
|
"""
|
|
dataframe.loc[
|
|
(
|
|
(qtpylib.crossed_above(dataframe['close'], dataframe['sar'])) &
|
|
(0 > (dataframe['sar'] - dataframe['close'])) &
|
|
(1 > (dataframe['sar'] - dataframe['sar'].shift(3))) &
|
|
(1 > dataframe['macd']) &
|
|
(1 > dataframe['macdhist']) &
|
|
(0 < (dataframe['macdhist'] - dataframe['macdhist'].shift(3))) &
|
|
(0 < dataframe['angle']) &
|
|
(dataframe['volume'] > 0) # Make sure Volume is not 0
|
|
),
|
|
'buy'] = 1
|
|
|
|
return dataframe
|
|
|
|
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Based on TA indicators, populates the sell signal for the given dataframe
|
|
:param dataframe: DataFrame populated with indicators
|
|
:param metadata: Additional information, like the currently traded pair
|
|
:return: DataFrame with buy column
|
|
"""
|
|
dataframe.loc[
|
|
(
|
|
(qtpylib.crossed_below(dataframe['sar'], dataframe['close'])) &
|
|
(dataframe['uo'] < 69) &
|
|
(0 > (dataframe['sar'] - dataframe['close'])) &
|
|
(1 > (dataframe['sar'] - dataframe['sar'].shift(3))) &
|
|
(0 < dataframe['macd']) &
|
|
(1 < dataframe['macdhist']) &
|
|
(0 > (dataframe['macdhist'] - dataframe['macdhist'].shift(3))) &
|
|
(0 > dataframe['angle']) &
|
|
(dataframe['volume'] > 0) # Make sure Volume is not 0
|
|
),
|
|
'sell'] = 1
|
|
return dataframe
|
|
|
|
|
|
"""
|
|
buy1:
|
|
trigger = macd cross above macdsignal
|
|
guard = sar < close
|
|
guard = 70 > ou > 50
|
|
guard = lenear_angle > 0
|
|
|
|
buy2:
|
|
trigger = sar < close
|
|
guard = macd > macdsignal
|
|
guard = 70 > ou > 50
|
|
buy3:
|
|
trigger = ou cross below 30 & close > max(close)
|
|
|
|
sell1:
|
|
trigger = macd cross below macdsignal
|
|
guard = sar > close
|
|
guard = 50 > ou > 20
|
|
sell2:
|
|
trigger = sar > close
|
|
guard = macd < macdsignal
|
|
guard = 50 > ou > 20
|
|
"""
|
|
|
|
"""
|
|
+--------+---------+----------+------------------+--------------+------------------------------+----------------+-------------+
|
|
| Best | Epoch | Trades | Win Draw Loss | Avg profit | Profit | Avg duration | Objective |
|
|
|--------+---------+----------+------------------+--------------+------------------------------+----------------+-------------|
|
|
| * Best | 3/500 | 1194 | 523 654 17 | -0.12% | -0.06906927 BTC (-138.00%) | 1,559.8 m | 2.71708 |
|
|
| * Best | 6/500 | 100 | 20 0 80 | -0.07% | -0.00352831 BTC (-7.05%) | 11.5 m | 1.87067 |
|
|
| Best | 37/500 | 12 | 6 0 6 | 0.49% | 0.00294367 BTC (5.88%) | 18.2 m | 1.86009 |
|
|
| Best | 67/500 | 10 | 6 0 4 | 0.89% | 0.00443786 BTC (8.87%) | 19.5 m | 1.85245 |
|
|
| Best | 91/500 | 73 | 21 5 47 | 0.00% | 0.00007645 BTC (0.15%) | 10.2 m | 1.85215 |
|
|
| Best | 92/500 | 48 | 17 2 29 | 0.05% | 0.00116911 BTC (2.34%) | 10.4 m | 1.85189 |
|
|
| Best | 94/500 | 12 | 6 0 6 | 0.69% | 0.00416071 BTC (8.31%) | 17.8 m | 1.85143 |
|
|
| Best | 110/500 | 18 | 6 1 11 | 0.36% | 0.00327838 BTC (6.55%) | 14.3 m | 1.85113 |
|
|
| Best | 257/500 | 48 | 16 0 32 | 0.06% | 0.00154456 BTC (3.09%) | 11.3 m | 1.8505 |
|
|
| Best | 388/500 | 74 | 23 14 37 | 0.01% | 0.00045826 BTC (0.92%) | 8.2 m | 1.84665 |
|
|
[Epoch 500 of 500 (100%)] || | [Time: 1:04:49, Elapsed Time: 1:04:49]
|
|
2021-01-31 01:14:47,851 - freqtrade.optimize.hyperopt - INFO - 500 epochs saved to '/home/yakov/PycharmProjects/freqtrade/.env/bin/user_data/hyperopt_results/hyperopt_results_2021-01-31_00-07-23.pickle'.
|
|
|
|
Best result:
|
|
|
|
388/500: 74 trades. 23/14/37 Wins/Draws/Losses. Avg profit 0.01%. Median profit -0.02%. Total profit 0.00045826 BTC ( 0.92Σ%). Avg duration 8.2 min. Objective: 1.84665
|
|
|
|
|
|
# Buy hyperspace params:
|
|
buy_params = {
|
|
'angle-enabled': False,
|
|
'macd-enabled': False,
|
|
'macd_value': 0.73579,
|
|
'macdhist_shift': 0.87895,
|
|
'macdhist_value': 0.29935,
|
|
'sar-enabled': False,
|
|
'sar_ratio': 0.43819,
|
|
'sar_shift': 0.98992,
|
|
'trigger': 'sell-macd_cross_signal'
|
|
}
|
|
|
|
# Sell hyperspace params:
|
|
sell_params = {
|
|
'angle_h_s': 0.07105,
|
|
'macd_value_s': 0.08408,
|
|
'macdhist_shift_s': -0.72567,
|
|
'macdhist_value_s': 0.77324,
|
|
'sar_ratio_s': 0.58347,
|
|
'sar_shift_s': 0.81212,
|
|
'sell-angle-enabled': True,
|
|
'sell-macd-enabled': False,
|
|
'sell-sar-enabled': False,
|
|
'sell-uo-enabled': True,
|
|
'trigger': 'sell-macd_cross_signal',
|
|
'uo_l_s': 14
|
|
}
|
|
|
|
# ROI table:
|
|
minimal_roi = {
|
|
"0": 0.07193,
|
|
"3": 0.0382,
|
|
"5": 0.01183,
|
|
"7": 0
|
|
}
|
|
|
|
# Stoploss:
|
|
stoploss = -0.25471
|
|
|
|
# Trailing stop:
|
|
trailing_stop = True
|
|
trailing_stop_positive = 0.04697
|
|
trailing_stop_positive_offset = 0.05329
|
|
trailing_only_offset_is_reached = True
|
|
|
|
"""
|