230 lines
9.9 KiB
Python
230 lines
9.9 KiB
Python
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
|
# isort: skip_file
|
|
|
|
# --- Do not remove these libs ---
|
|
from functools import reduce
|
|
from typing import Any, Callable, Dict, List
|
|
|
|
import numpy as np # noqa
|
|
import pandas as pd # noqa
|
|
from pandas import DataFrame
|
|
from skopt.space import Categorical, Dimension, Integer, Real # noqa
|
|
|
|
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
|
|
|
# --------------------------------
|
|
# Add your lib to import here
|
|
import talib.abstract as ta # noqa
|
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
|
|
|
|
|
class SampleHyperOpt(IHyperOpt):
|
|
"""
|
|
This is a sample Hyperopt to inspire you.
|
|
|
|
More information in the documentation: https://www.freqtrade.io/en/latest/hyperopt/
|
|
|
|
You should:
|
|
- Rename the class name to some unique name.
|
|
- Add any methods you want to build your hyperopt.
|
|
- Add any lib you need to build your hyperopt.
|
|
|
|
An easier way to get a new hyperopt file is by using
|
|
`freqtrade new-hyperopt --hyperopt MyCoolHyperopt`.
|
|
|
|
You must keep:
|
|
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
|
|
|
|
The methods roi_space, generate_roi_table and stoploss_space are not required
|
|
and are provided by default.
|
|
However, you may override them if you need 'roi' and 'stoploss' spaces that
|
|
differ from the defaults offered by Freqtrade.
|
|
Sample implementation of these methods will be copied to `user_data/hyperopts` when
|
|
creating the user-data directory using `freqtrade create-userdir --userdir user_data`,
|
|
or is available online under the following URL:
|
|
https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt_advanced.py.
|
|
"""
|
|
|
|
@staticmethod
|
|
def buy_indicator_space() -> List[Dimension]:
|
|
"""
|
|
Define your Hyperopt space for searching buy strategy parameters.
|
|
"""
|
|
return [
|
|
Integer(10, 25, name='mfi-value'),
|
|
Integer(15, 45, name='fastd-value'),
|
|
Integer(20, 50, name='adx-value'),
|
|
Integer(20, 40, name='rsi-value'),
|
|
Integer(75, 90, name='short-mfi-value'),
|
|
Integer(55, 85, name='short-fastd-value'),
|
|
Integer(50, 80, name='short-adx-value'),
|
|
Integer(60, 80, name='short-rsi-value'),
|
|
Categorical([True, False], name='mfi-enabled'),
|
|
Categorical([True, False], name='fastd-enabled'),
|
|
Categorical([True, False], name='adx-enabled'),
|
|
Categorical([True, False], name='rsi-enabled'),
|
|
Categorical(['boll', 'macd_cross_signal', 'sar_reversal'], name='trigger'),
|
|
|
|
]
|
|
|
|
@staticmethod
|
|
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
"""
|
|
Define the buy strategy parameters to be used by Hyperopt.
|
|
"""
|
|
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Buy strategy Hyperopt will build and use.
|
|
"""
|
|
long_conditions = []
|
|
short_conditions = []
|
|
|
|
# GUARDS AND TRENDS
|
|
if 'mfi-enabled' in params and params['mfi-enabled']:
|
|
long_conditions.append(dataframe['mfi'] < params['mfi-value'])
|
|
short_conditions.append(dataframe['mfi'] > params['short-mfi-value'])
|
|
if 'fastd-enabled' in params and params['fastd-enabled']:
|
|
long_conditions.append(dataframe['fastd'] < params['fastd-value'])
|
|
short_conditions.append(dataframe['fastd'] > params['short-fastd-value'])
|
|
if 'adx-enabled' in params and params['adx-enabled']:
|
|
long_conditions.append(dataframe['adx'] > params['adx-value'])
|
|
short_conditions.append(dataframe['adx'] < params['short-adx-value'])
|
|
if 'rsi-enabled' in params and params['rsi-enabled']:
|
|
long_conditions.append(dataframe['rsi'] < params['rsi-value'])
|
|
short_conditions.append(dataframe['rsi'] > params['short-rsi-value'])
|
|
|
|
# TRIGGERS
|
|
if 'trigger' in params:
|
|
if params['trigger'] == 'boll':
|
|
long_conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
|
short_conditions.append(dataframe['close'] > dataframe['bb_upperband'])
|
|
if params['trigger'] == 'macd_cross_signal':
|
|
long_conditions.append(qtpylib.crossed_above(
|
|
dataframe['macd'],
|
|
dataframe['macdsignal']
|
|
))
|
|
short_conditions.append(qtpylib.crossed_below(
|
|
dataframe['macd'],
|
|
dataframe['macdsignal']
|
|
))
|
|
if params['trigger'] == 'sar_reversal':
|
|
long_conditions.append(qtpylib.crossed_above(
|
|
dataframe['close'],
|
|
dataframe['sar']
|
|
))
|
|
short_conditions.append(qtpylib.crossed_below(
|
|
dataframe['close'],
|
|
dataframe['sar']
|
|
))
|
|
|
|
# Check that volume is not 0
|
|
long_conditions.append(dataframe['volume'] > 0)
|
|
short_conditions.append(dataframe['volume'] > 0)
|
|
|
|
if long_conditions:
|
|
dataframe.loc[
|
|
reduce(lambda x, y: x & y, long_conditions),
|
|
'buy'] = 1
|
|
|
|
if short_conditions:
|
|
dataframe.loc[
|
|
reduce(lambda x, y: x & y, short_conditions),
|
|
'enter_short'] = 1
|
|
|
|
return dataframe
|
|
|
|
return populate_buy_trend
|
|
|
|
@staticmethod
|
|
def sell_indicator_space() -> List[Dimension]:
|
|
"""
|
|
Define your Hyperopt space for searching sell strategy parameters.
|
|
"""
|
|
return [
|
|
Integer(75, 100, name='sell-mfi-value'),
|
|
Integer(50, 100, name='sell-fastd-value'),
|
|
Integer(50, 100, name='sell-adx-value'),
|
|
Integer(60, 100, name='sell-rsi-value'),
|
|
Integer(1, 25, name='exit-short-mfi-value'),
|
|
Integer(1, 50, name='exit-short-fastd-value'),
|
|
Integer(1, 50, name='exit-short-adx-value'),
|
|
Integer(1, 40, name='exit-short-rsi-value'),
|
|
Categorical([True, False], name='sell-mfi-enabled'),
|
|
Categorical([True, False], name='sell-fastd-enabled'),
|
|
Categorical([True, False], name='sell-adx-enabled'),
|
|
Categorical([True, False], name='sell-rsi-enabled'),
|
|
Categorical(['sell-boll',
|
|
'sell-macd_cross_signal',
|
|
'sell-sar_reversal'],
|
|
name='sell-trigger'
|
|
),
|
|
]
|
|
|
|
@staticmethod
|
|
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
"""
|
|
Define the sell strategy parameters to be used by Hyperopt.
|
|
"""
|
|
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Sell strategy Hyperopt will build and use.
|
|
"""
|
|
exit_long_conditions = []
|
|
exit_short_conditions = []
|
|
|
|
# GUARDS AND TRENDS
|
|
if 'sell-mfi-enabled' in params and params['sell-mfi-enabled']:
|
|
exit_long_conditions.append(dataframe['mfi'] > params['sell-mfi-value'])
|
|
exit_short_conditions.append(dataframe['mfi'] < params['exit-short-mfi-value'])
|
|
if 'sell-fastd-enabled' in params and params['sell-fastd-enabled']:
|
|
exit_long_conditions.append(dataframe['fastd'] > params['sell-fastd-value'])
|
|
exit_short_conditions.append(dataframe['fastd'] < params['exit-short-fastd-value'])
|
|
if 'sell-adx-enabled' in params and params['sell-adx-enabled']:
|
|
exit_long_conditions.append(dataframe['adx'] < params['sell-adx-value'])
|
|
exit_short_conditions.append(dataframe['adx'] > params['exit-short-adx-value'])
|
|
if 'sell-rsi-enabled' in params and params['sell-rsi-enabled']:
|
|
exit_long_conditions.append(dataframe['rsi'] > params['sell-rsi-value'])
|
|
exit_short_conditions.append(dataframe['rsi'] < params['exit-short-rsi-value'])
|
|
|
|
# TRIGGERS
|
|
if 'sell-trigger' in params:
|
|
if params['sell-trigger'] == 'sell-boll':
|
|
exit_long_conditions.append(dataframe['close'] > dataframe['bb_upperband'])
|
|
exit_short_conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
|
if params['sell-trigger'] == 'sell-macd_cross_signal':
|
|
exit_long_conditions.append(qtpylib.crossed_above(
|
|
dataframe['macdsignal'],
|
|
dataframe['macd']
|
|
))
|
|
exit_short_conditions.append(qtpylib.crossed_below(
|
|
dataframe['macdsignal'],
|
|
dataframe['macd']
|
|
))
|
|
if params['sell-trigger'] == 'sell-sar_reversal':
|
|
exit_long_conditions.append(qtpylib.crossed_above(
|
|
dataframe['sar'],
|
|
dataframe['close']
|
|
))
|
|
exit_short_conditions.append(qtpylib.crossed_below(
|
|
dataframe['sar'],
|
|
dataframe['close']
|
|
))
|
|
|
|
# Check that volume is not 0
|
|
exit_long_conditions.append(dataframe['volume'] > 0)
|
|
exit_short_conditions.append(dataframe['volume'] > 0)
|
|
|
|
if exit_long_conditions:
|
|
dataframe.loc[
|
|
reduce(lambda x, y: x & y, exit_long_conditions),
|
|
'sell'] = 1
|
|
|
|
if exit_short_conditions:
|
|
dataframe.loc[
|
|
reduce(lambda x, y: x & y, exit_short_conditions),
|
|
'exit_short'] = 1
|
|
|
|
return dataframe
|
|
|
|
return populate_sell_trend
|