85 lines
3.5 KiB
Python
85 lines
3.5 KiB
Python
from unittest.mock import MagicMock
|
|
|
|
from arrow import Arrow
|
|
import pytest
|
|
from pandas import DataFrame, to_datetime
|
|
|
|
from freqtrade.arguments import TimeRange
|
|
from freqtrade.data.btanalysis import (BT_DATA_COLUMNS,
|
|
extract_trades_of_period,
|
|
load_backtest_data, load_trades)
|
|
from freqtrade.data.history import load_pair_history, make_testdata_path
|
|
from freqtrade.tests.test_persistence import create_mock_trades
|
|
|
|
|
|
def test_load_backtest_data():
|
|
|
|
filename = make_testdata_path(None) / "backtest-result_test.json"
|
|
bt_data = load_backtest_data(filename)
|
|
assert isinstance(bt_data, DataFrame)
|
|
assert list(bt_data.columns) == BT_DATA_COLUMNS + ["profitabs"]
|
|
assert len(bt_data) == 179
|
|
|
|
# Test loading from string (must yield same result)
|
|
bt_data2 = load_backtest_data(str(filename))
|
|
assert bt_data.equals(bt_data2)
|
|
|
|
with pytest.raises(ValueError, match=r"File .* does not exist\."):
|
|
load_backtest_data(str("filename") + "nofile")
|
|
|
|
|
|
def test_load_trades_file(default_conf, fee, mocker):
|
|
# Real testing of load_backtest_data is done in test_load_backtest_data
|
|
lbt = mocker.patch("freqtrade.data.btanalysis.load_backtest_data", MagicMock())
|
|
filename = make_testdata_path(None) / "backtest-result_test.json"
|
|
load_trades(db_url=None, exportfilename=filename)
|
|
assert lbt.call_count == 1
|
|
|
|
|
|
@pytest.mark.usefixtures("init_persistence")
|
|
def test_load_trades_db(default_conf, fee, mocker):
|
|
|
|
create_mock_trades(fee)
|
|
# remove init so it does not init again
|
|
init_mock = mocker.patch('freqtrade.persistence.init', MagicMock())
|
|
|
|
trades = load_trades(db_url=default_conf['db_url'], exportfilename=None)
|
|
assert init_mock.call_count == 1
|
|
assert len(trades) == 3
|
|
assert isinstance(trades, DataFrame)
|
|
assert "pair" in trades.columns
|
|
assert "open_time" in trades.columns
|
|
|
|
|
|
def test_extract_trades_of_period():
|
|
pair = "UNITTEST/BTC"
|
|
timerange = TimeRange(None, 'line', 0, -1000)
|
|
|
|
data = load_pair_history(pair=pair, ticker_interval='1m',
|
|
datadir=None, timerange=timerange)
|
|
|
|
# timerange = 2017-11-14 06:07 - 2017-11-14 22:58:00
|
|
trades = DataFrame(
|
|
{'pair': [pair, pair, pair, pair],
|
|
'profit_percent': [0.0, 0.1, -0.2, -0.5],
|
|
'profit_abs': [0.0, 1, -2, -5],
|
|
'open_time': to_datetime([Arrow(2017, 11, 13, 15, 40, 0).datetime,
|
|
Arrow(2017, 11, 14, 9, 41, 0).datetime,
|
|
Arrow(2017, 11, 14, 14, 20, 0).datetime,
|
|
Arrow(2017, 11, 15, 3, 40, 0).datetime,
|
|
], utc=True
|
|
),
|
|
'close_time': to_datetime([Arrow(2017, 11, 13, 16, 40, 0).datetime,
|
|
Arrow(2017, 11, 14, 10, 41, 0).datetime,
|
|
Arrow(2017, 11, 14, 15, 25, 0).datetime,
|
|
Arrow(2017, 11, 15, 3, 55, 0).datetime,
|
|
], utc=True)
|
|
})
|
|
trades1 = extract_trades_of_period(data, trades)
|
|
# First and last trade are dropped as they are out of range
|
|
assert len(trades1) == 2
|
|
assert trades1.iloc[0].open_time == Arrow(2017, 11, 14, 9, 41, 0).datetime
|
|
assert trades1.iloc[0].close_time == Arrow(2017, 11, 14, 10, 41, 0).datetime
|
|
assert trades1.iloc[-1].open_time == Arrow(2017, 11, 14, 14, 20, 0).datetime
|
|
assert trades1.iloc[-1].close_time == Arrow(2017, 11, 14, 15, 25, 0).datetime
|