316 lines
12 KiB
Python
316 lines
12 KiB
Python
import logging
|
|
from typing import Dict
|
|
|
|
import numpy as np # noqa
|
|
import pandas as pd # noqa
|
|
import talib.abstract as ta
|
|
from pandas import DataFrame
|
|
from technical import qtpylib
|
|
|
|
from freqtrade.strategy import IntParameter, IStrategy, merge_informative_pair # noqa
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class FreqaiExampleHybridStrategy(IStrategy):
|
|
"""
|
|
Example of a hybrid FreqAI strat, designed to illustrate how a user may employ
|
|
FreqAI to bolster a typical Freqtrade strategy.
|
|
|
|
Launching this strategy would be:
|
|
|
|
freqtrade trade --strategy FreqaiExampleHybridStrategy --strategy-path freqtrade/templates
|
|
--freqaimodel CatboostClassifier --config config_examples/config_freqai.example.json
|
|
|
|
or the user simply adds this to their config:
|
|
|
|
"freqai": {
|
|
"enabled": true,
|
|
"purge_old_models": 2,
|
|
"train_period_days": 15,
|
|
"identifier": "uniqe-id",
|
|
"feature_parameters": {
|
|
"include_timeframes": [
|
|
"3m",
|
|
"15m",
|
|
"1h"
|
|
],
|
|
"include_corr_pairlist": [
|
|
"BTC/USDT",
|
|
"ETH/USDT"
|
|
],
|
|
"label_period_candles": 20,
|
|
"include_shifted_candles": 2,
|
|
"DI_threshold": 0.9,
|
|
"weight_factor": 0.9,
|
|
"principal_component_analysis": false,
|
|
"use_SVM_to_remove_outliers": true,
|
|
"indicator_periods_candles": [10, 20]
|
|
},
|
|
"data_split_parameters": {
|
|
"test_size": 0,
|
|
"random_state": 1
|
|
},
|
|
"model_training_parameters": {
|
|
"n_estimators": 800
|
|
}
|
|
},
|
|
|
|
Thanks to @smarmau and @johanvulgt for developing and sharing the strategy.
|
|
"""
|
|
|
|
minimal_roi = {
|
|
"60": 0.01,
|
|
"30": 0.02,
|
|
"0": 0.04
|
|
}
|
|
|
|
plot_config = {
|
|
'main_plot': {
|
|
'tema': {},
|
|
},
|
|
'subplots': {
|
|
"MACD": {
|
|
'macd': {'color': 'blue'},
|
|
'macdsignal': {'color': 'orange'},
|
|
},
|
|
"RSI": {
|
|
'rsi': {'color': 'red'},
|
|
},
|
|
"Up_or_down": {
|
|
'&s-up_or_down': {'color': 'green'},
|
|
}
|
|
}
|
|
}
|
|
|
|
process_only_new_candles = True
|
|
stoploss = -0.05
|
|
use_exit_signal = True
|
|
startup_candle_count: int = 30
|
|
can_short = True
|
|
|
|
# Hyperoptable parameters
|
|
buy_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True)
|
|
sell_rsi = IntParameter(low=50, high=100, default=70, space='sell', optimize=True, load=True)
|
|
short_rsi = IntParameter(low=51, high=100, default=70, space='sell', optimize=True, load=True)
|
|
exit_short_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True)
|
|
|
|
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int,
|
|
metadata: Dict, **kwargs):
|
|
"""
|
|
*Only functional with FreqAI enabled strategies*
|
|
This function will automatically expand the defined features on the config defined
|
|
`indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and
|
|
`include_corr_pairs`. In other words, a single feature defined in this function
|
|
will automatically expand to a total of
|
|
`indicator_periods_candles` * `include_timeframes` * `include_shifted_candles` *
|
|
`include_corr_pairs` numbers of features added to the model.
|
|
|
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
|
|
|
More details on how these config defined parameters accelerate feature engineering
|
|
in the documentation at:
|
|
|
|
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
|
|
|
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
|
|
|
|
:param dataframe: strategy dataframe which will receive the features
|
|
:param period: period of the indicator - usage example:
|
|
:param metadata: metadata of current pair
|
|
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
|
"""
|
|
|
|
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
|
|
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
|
|
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
|
|
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
|
|
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
|
|
|
bollinger = qtpylib.bollinger_bands(
|
|
qtpylib.typical_price(dataframe), window=period, stds=2.2
|
|
)
|
|
dataframe["bb_lowerband-period"] = bollinger["lower"]
|
|
dataframe["bb_middleband-period"] = bollinger["mid"]
|
|
dataframe["bb_upperband-period"] = bollinger["upper"]
|
|
|
|
dataframe["%-bb_width-period"] = (
|
|
dataframe["bb_upperband-period"]
|
|
- dataframe["bb_lowerband-period"]
|
|
) / dataframe["bb_middleband-period"]
|
|
dataframe["%-close-bb_lower-period"] = (
|
|
dataframe["close"] / dataframe["bb_lowerband-period"]
|
|
)
|
|
|
|
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
|
|
|
|
dataframe["%-relative_volume-period"] = (
|
|
dataframe["volume"] / dataframe["volume"].rolling(period).mean()
|
|
)
|
|
|
|
return dataframe
|
|
|
|
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
|
"""
|
|
*Only functional with FreqAI enabled strategies*
|
|
This function will automatically expand the defined features on the config defined
|
|
`include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
|
|
In other words, a single feature defined in this function
|
|
will automatically expand to a total of
|
|
`include_timeframes` * `include_shifted_candles` * `include_corr_pairs`
|
|
numbers of features added to the model.
|
|
|
|
Features defined here will *not* be automatically duplicated on user defined
|
|
`indicator_periods_candles`
|
|
|
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
|
|
|
More details on how these config defined parameters accelerate feature engineering
|
|
in the documentation at:
|
|
|
|
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
|
|
|
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
|
|
|
|
:param dataframe: strategy dataframe which will receive the features
|
|
:param metadata: metadata of current pair
|
|
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
|
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
|
|
"""
|
|
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
|
dataframe["%-raw_volume"] = dataframe["volume"]
|
|
dataframe["%-raw_price"] = dataframe["close"]
|
|
return dataframe
|
|
|
|
def feature_engineering_standard(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
|
"""
|
|
*Only functional with FreqAI enabled strategies*
|
|
This optional function will be called once with the dataframe of the base timeframe.
|
|
This is the final function to be called, which means that the dataframe entering this
|
|
function will contain all the features and columns created by all other
|
|
freqai_feature_engineering_* functions.
|
|
|
|
This function is a good place to do custom exotic feature extractions (e.g. tsfresh).
|
|
This function is a good place for any feature that should not be auto-expanded upon
|
|
(e.g. day of the week).
|
|
|
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
|
|
|
More details about feature engineering available:
|
|
|
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
|
|
|
:param dataframe: strategy dataframe which will receive the features
|
|
:param metadata: metadata of current pair
|
|
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
|
|
"""
|
|
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
|
|
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
|
|
return dataframe
|
|
|
|
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
|
"""
|
|
*Only functional with FreqAI enabled strategies*
|
|
Required function to set the targets for the model.
|
|
All targets must be prepended with `&` to be recognized by the FreqAI internals.
|
|
|
|
More details about feature engineering available:
|
|
|
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
|
|
|
:param dataframe: strategy dataframe which will receive the targets
|
|
:param metadata: metadata of current pair
|
|
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
|
|
"""
|
|
self.freqai.class_names = ["down", "up"]
|
|
dataframe['&s-up_or_down'] = np.where(dataframe["close"].shift(-50) >
|
|
dataframe["close"], 'up', 'down')
|
|
|
|
return dataframe
|
|
|
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: # noqa: C901
|
|
|
|
# User creates their own custom strat here. Present example is a supertrend
|
|
# based strategy.
|
|
|
|
dataframe = self.freqai.start(dataframe, metadata, self)
|
|
|
|
# TA indicators to combine with the Freqai targets
|
|
# RSI
|
|
dataframe['rsi'] = ta.RSI(dataframe)
|
|
|
|
# Bollinger Bands
|
|
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
|
dataframe['bb_lowerband'] = bollinger['lower']
|
|
dataframe['bb_middleband'] = bollinger['mid']
|
|
dataframe['bb_upperband'] = bollinger['upper']
|
|
dataframe["bb_percent"] = (
|
|
(dataframe["close"] - dataframe["bb_lowerband"]) /
|
|
(dataframe["bb_upperband"] - dataframe["bb_lowerband"])
|
|
)
|
|
dataframe["bb_width"] = (
|
|
(dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"]
|
|
)
|
|
|
|
# TEMA - Triple Exponential Moving Average
|
|
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
|
|
|
return dataframe
|
|
|
|
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
df.loc[
|
|
(
|
|
# Signal: RSI crosses above 30
|
|
(qtpylib.crossed_above(df['rsi'], self.buy_rsi.value)) &
|
|
(df['tema'] <= df['bb_middleband']) & # Guard: tema below BB middle
|
|
(df['tema'] > df['tema'].shift(1)) & # Guard: tema is raising
|
|
(df['volume'] > 0) & # Make sure Volume is not 0
|
|
(df['do_predict'] == 1) & # Make sure Freqai is confident in the prediction
|
|
# Only enter trade if Freqai thinks the trend is in this direction
|
|
(df['&s-up_or_down'] == 'up')
|
|
),
|
|
'enter_long'] = 1
|
|
|
|
df.loc[
|
|
(
|
|
# Signal: RSI crosses above 70
|
|
(qtpylib.crossed_above(df['rsi'], self.short_rsi.value)) &
|
|
(df['tema'] > df['bb_middleband']) & # Guard: tema above BB middle
|
|
(df['tema'] < df['tema'].shift(1)) & # Guard: tema is falling
|
|
(df['volume'] > 0) & # Make sure Volume is not 0
|
|
(df['do_predict'] == 1) & # Make sure Freqai is confident in the prediction
|
|
# Only enter trade if Freqai thinks the trend is in this direction
|
|
(df['&s-up_or_down'] == 'down')
|
|
),
|
|
'enter_short'] = 1
|
|
|
|
return df
|
|
|
|
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
df.loc[
|
|
(
|
|
# Signal: RSI crosses above 70
|
|
(qtpylib.crossed_above(df['rsi'], self.sell_rsi.value)) &
|
|
(df['tema'] > df['bb_middleband']) & # Guard: tema above BB middle
|
|
(df['tema'] < df['tema'].shift(1)) & # Guard: tema is falling
|
|
(df['volume'] > 0) # Make sure Volume is not 0
|
|
),
|
|
|
|
'exit_long'] = 1
|
|
|
|
df.loc[
|
|
(
|
|
# Signal: RSI crosses above 30
|
|
(qtpylib.crossed_above(df['rsi'], self.exit_short_rsi.value)) &
|
|
# Guard: tema below BB middle
|
|
(df['tema'] <= df['bb_middleband']) &
|
|
(df['tema'] > df['tema'].shift(1)) & # Guard: tema is raising
|
|
(df['volume'] > 0) # Make sure Volume is not 0
|
|
),
|
|
'exit_short'] = 1
|
|
|
|
return df
|