# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement from datetime import datetime import talib.abstract as ta from pandas import DataFrame import freqtrade.vendor.qtpylib.indicators as qtpylib from freqtrade.persistence import Trade from freqtrade.strategy import (BooleanParameter, DecimalParameter, IntParameter, IStrategy, RealParameter) class StrategyTestV3(IStrategy): """ Strategy used by tests freqtrade bot. Please do not modify this strategy, it's intended for internal use only. Please look at the SampleStrategy in the user_data/strategy directory or strategy repository https://github.com/freqtrade/freqtrade-strategies for samples and inspiration. """ INTERFACE_VERSION = 3 # Minimal ROI designed for the strategy minimal_roi = { "40": 0.0, "30": 0.01, "20": 0.02, "0": 0.04 } # Optimal stoploss designed for the strategy stoploss = -0.10 # Optimal timeframe for the strategy timeframe = '5m' # Optional order type mapping order_types = { 'entry': 'limit', 'exit': 'limit', 'stoploss': 'limit', 'stoploss_on_exchange': False } # Number of candles the strategy requires before producing valid signals startup_candle_count: int = 20 # Optional time in force for orders order_time_in_force = { 'entry': 'gtc', 'exit': 'gtc', } buy_params = { 'buy_rsi': 35, # Intentionally not specified, so "default" is tested # 'buy_plusdi': 0.4 } sell_params = { 'sell_rsi': 74, 'sell_minusdi': 0.4 } buy_rsi = IntParameter([0, 50], default=30, space='buy') buy_plusdi = RealParameter(low=0, high=1, default=0.5, space='buy') sell_rsi = IntParameter(low=50, high=100, default=70, space='sell') sell_minusdi = DecimalParameter(low=0, high=1, default=0.5001, decimals=3, space='sell', load=False) protection_enabled = BooleanParameter(default=True) protection_cooldown_lookback = IntParameter([0, 50], default=30) # TODO: Can this work with protection tests? (replace HyperoptableStrategy implicitly ... ) # @property # def protections(self): # prot = [] # if self.protection_enabled.value: # prot.append({ # "method": "CooldownPeriod", # "stop_duration_candles": self.protection_cooldown_lookback.value # }) # return prot def informative_pairs(self): return [] def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: # Momentum Indicator # ------------------------------------ # ADX dataframe['adx'] = ta.ADX(dataframe) # MACD macd = ta.MACD(dataframe) dataframe['macd'] = macd['macd'] dataframe['macdsignal'] = macd['macdsignal'] dataframe['macdhist'] = macd['macdhist'] # Minus Directional Indicator / Movement dataframe['minus_di'] = ta.MINUS_DI(dataframe) # Plus Directional Indicator / Movement dataframe['plus_di'] = ta.PLUS_DI(dataframe) # RSI dataframe['rsi'] = ta.RSI(dataframe) # Stoch fast stoch_fast = ta.STOCHF(dataframe) dataframe['fastd'] = stoch_fast['fastd'] dataframe['fastk'] = stoch_fast['fastk'] # Bollinger bands bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2) dataframe['bb_lowerband'] = bollinger['lower'] dataframe['bb_middleband'] = bollinger['mid'] dataframe['bb_upperband'] = bollinger['upper'] # EMA - Exponential Moving Average dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10) return dataframe def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: dataframe.loc[ ( (dataframe['rsi'] < self.buy_rsi.value) & (dataframe['fastd'] < 35) & (dataframe['adx'] > 30) & (dataframe['plus_di'] > self.buy_plusdi.value) ) | ( (dataframe['adx'] > 65) & (dataframe['plus_di'] > self.buy_plusdi.value) ), 'enter_long'] = 1 dataframe.loc[ ( qtpylib.crossed_below(dataframe['rsi'], self.sell_rsi.value) ), 'enter_short'] = 1 return dataframe def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: dataframe.loc[ ( ( (qtpylib.crossed_above(dataframe['rsi'], self.sell_rsi.value)) | (qtpylib.crossed_above(dataframe['fastd'], 70)) ) & (dataframe['adx'] > 10) & (dataframe['minus_di'] > 0) ) | ( (dataframe['adx'] > 70) & (dataframe['minus_di'] > self.sell_minusdi.value) ), 'exit_long'] = 1 dataframe.loc[ ( qtpylib.crossed_above(dataframe['rsi'], self.buy_rsi.value) ), 'exit_short'] = 1 return dataframe def leverage(self, pair: str, current_time: datetime, current_rate: float, proposed_leverage: float, max_leverage: float, side: str, **kwargs) -> float: # Return 3.0 in all cases. # Bot-logic must make sure it's an allowed leverage and eventually adjust accordingly. return 3.0 def adjust_trade_position(self, trade: Trade, current_time: datetime, current_rate: float, current_profit: float, min_stake: float, max_stake: float, **kwargs): if current_profit < -0.0075: orders = trade.select_filled_orders(trade.enter_side) return round(orders[0].cost, 0) return None class StrategyTestV3Futures(StrategyTestV3): can_short = True