# pragma pylint: disable=missing-docstring,W0212 import logging from typing import Tuple, Dict import arrow from pandas import DataFrame, Series from tabulate import tabulate from freqtrade import exchange from freqtrade.analyze import populate_buy_trend, populate_sell_trend from freqtrade.exchange import Bittrex from freqtrade.main import min_roi_reached from freqtrade.misc import load_config from freqtrade.optimize import load_data, preprocess from freqtrade.persistence import Trade logger = logging.getLogger(__name__) def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]: """ Get the maximum timeframe for the given backtest data :param data: dictionary with preprocessed backtesting data :return: tuple containing min_date, max_date """ all_dates = Series([]) for pair, pair_data in data.items(): all_dates = all_dates.append(pair_data['date']) all_dates.sort_values(inplace=True) return arrow.get(all_dates.iloc[0]), arrow.get(all_dates.iloc[-1]) def generate_text_table( data: Dict[str, Dict], results: DataFrame, stake_currency, ticker_interval) -> str: """ Generates and returns a text table for the given backtest data and the results dataframe :return: pretty printed table with tabulate as str """ floatfmt = ('s', 'd', '.2f', '.8f', '.1f') tabular_data = [] headers = ['pair', 'buy count', 'avg profit %', 'total profit ' + stake_currency, 'avg duration', 'profit', 'loss'] for pair in data: result = results[results.currency == pair] tabular_data.append([ pair, len(result.index), result.profit_percent.mean() * 100.0, result.profit_BTC.sum(), result.duration.mean() * ticker_interval, result.profit.sum(), result.loss.sum() ]) # Append Total tabular_data.append([ 'TOTAL', len(results.index), results.profit_percent.mean() * 100.0, results.profit_BTC.sum(), results.duration.mean() * ticker_interval, results.profit.sum(), results.loss.sum() ]) return tabulate(tabular_data, headers=headers, floatfmt=floatfmt) def backtest(stake_amount: float, processed: Dict[str, DataFrame], max_open_trades: int = 0, realistic: bool = True, sell_profit_only: bool = False, stoploss: int = -1.00, use_sell_signal: bool = False) -> DataFrame: """ Implements backtesting functionality :param stake_amount: btc amount to use for each trade :param processed: a processed dictionary with format {pair, data} :param max_open_trades: maximum number of concurrent trades (default: 0, disabled) :param realistic: do we try to simulate realistic trades? (default: True) :return: DataFrame """ trades = [] trade_count_lock: dict = {} exchange._API = Bittrex({'key': '', 'secret': ''}) for pair, pair_data in processed.items(): pair_data['buy'], pair_data['sell'] = 0, 0 ticker = populate_sell_trend(populate_buy_trend(pair_data)) # for each buy point lock_pair_until = None buy_subset = ticker[ticker.buy == 1][['buy', 'open', 'close', 'date', 'sell']] for row in buy_subset.itertuples(index=True): if realistic: if lock_pair_until is not None and row.Index <= lock_pair_until: continue if max_open_trades > 0: # Check if max_open_trades has already been reached for the given date if not trade_count_lock.get(row.date, 0) < max_open_trades: continue if max_open_trades > 0: # Increase lock trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1 trade = Trade( open_rate=row.close, open_date=row.date, stake_amount=stake_amount, amount=stake_amount / row.open, fee=exchange.get_fee() ) # calculate win/lose forwards from buy point sell_subset = ticker[row.Index + 1:][['close', 'date', 'sell']] for row2 in sell_subset.itertuples(index=True): if max_open_trades > 0: # Increase trade_count_lock for every iteration trade_count_lock[row2.date] = trade_count_lock.get(row2.date, 0) + 1 current_profit_percent = trade.calc_profit_percent(rate=row2.close) if (sell_profit_only and current_profit_percent < 0): continue if min_roi_reached(trade, row2.close, row2.date) or \ (row2.sell == 1 and use_sell_signal) or \ current_profit_percent <= stoploss: current_profit_btc = trade.calc_profit(rate=row2.close) lock_pair_until = row2.Index trades.append( ( pair, current_profit_percent, current_profit_btc, row2.Index - row.Index, current_profit_btc > 0, current_profit_btc < 0 ) ) break labels = ['currency', 'profit_percent', 'profit_BTC', 'duration', 'profit', 'loss'] return DataFrame.from_records(trades, columns=labels) def start(args): # Initialize logger logging.basicConfig( level=args.loglevel, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', ) exchange._API = Bittrex({'key': '', 'secret': ''}) logger.info('Using config: %s ...', args.config) config = load_config(args.config) logger.info('Using ticker_interval: %s ...', args.ticker_interval) data = {} pairs = config['exchange']['pair_whitelist'] if args.live: logger.info('Downloading data for all pairs in whitelist ...') for pair in pairs: data[pair] = exchange.get_ticker_history(pair, args.ticker_interval) else: logger.info('Using local backtesting data (using whitelist in given config) ...') data = load_data(pairs=pairs, ticker_interval=args.ticker_interval, refresh_pairs=args.refresh_pairs) logger.info('Using stake_currency: %s ...', config['stake_currency']) logger.info('Using stake_amount: %s ...', config['stake_amount']) max_open_trades = 0 if args.realistic_simulation: logger.info('Using max_open_trades: %s ...', config['max_open_trades']) max_open_trades = config['max_open_trades'] # Monkey patch config from freqtrade import main main._CONF = config preprocessed = preprocess(data) # Print timeframe min_date, max_date = get_timeframe(preprocessed) logger.info('Measuring data from %s up to %s ...', min_date.isoformat(), max_date.isoformat()) # Execute backtest and print results results = backtest( stake_amount=config['stake_amount'], processed=preprocessed, max_open_trades=max_open_trades, realistic=args.realistic_simulation, sell_profit_only=config.get('experimental', {}).get('sell_profit_only', False), stoploss=config.get('stoploss'), use_sell_signal=config.get('experimental', {}).get('use_sell_signal', False) ) logger.info( '\n==================================== BACKTESTING REPORT ====================================\n%s', # noqa generate_text_table(data, results, config['stake_currency'], args.ticker_interval) )