""" IStrategy interface This module defines the interface to apply for strategies """ import logging from abc import ABC, abstractmethod from datetime import datetime from enum import Enum from typing import Dict, List, NamedTuple, Optional, Tuple import warnings import arrow from pandas import DataFrame from freqtrade.data.dataprovider import DataProvider from freqtrade.exchange import timeframe_to_minutes from freqtrade.persistence import Trade from freqtrade.wallets import Wallets logger = logging.getLogger(__name__) class SignalType(Enum): """ Enum to distinguish between buy and sell signals """ BUY = "buy" SELL = "sell" class SellType(Enum): """ Enum to distinguish between sell reasons """ ROI = "roi" STOP_LOSS = "stop_loss" STOPLOSS_ON_EXCHANGE = "stoploss_on_exchange" TRAILING_STOP_LOSS = "trailing_stop_loss" SELL_SIGNAL = "sell_signal" FORCE_SELL = "force_sell" NONE = "" class SellCheckTuple(NamedTuple): """ NamedTuple for Sell type + reason """ sell_flag: bool sell_type: SellType class IStrategy(ABC): """ Interface for freqtrade strategies Defines the mandatory structure must follow any custom strategies Attributes you can use: minimal_roi -> Dict: Minimal ROI designed for the strategy stoploss -> float: optimal stoploss designed for the strategy ticker_interval -> str: value of the ticker interval to use for the strategy """ _populate_fun_len: int = 0 _buy_fun_len: int = 0 _sell_fun_len: int = 0 # associated minimal roi minimal_roi: Dict # associated stoploss stoploss: float # trailing stoploss trailing_stop: bool = False trailing_stop_positive: float trailing_stop_positive_offset: float trailing_only_offset_is_reached = False # associated ticker interval ticker_interval: str # Optional order types order_types: Dict = { 'buy': 'limit', 'sell': 'limit', 'stoploss': 'limit', 'stoploss_on_exchange': False, 'stoploss_on_exchange_interval': 60, } # Optional time in force order_time_in_force: Dict = { 'buy': 'gtc', 'sell': 'gtc', } # run "populate_indicators" only for new candle process_only_new_candles: bool = False # Class level variables (intentional) containing # the dataprovider (dp) (access to other candles, historic data, ...) # and wallets - access to the current balance. dp: DataProvider wallets: Wallets def __init__(self, config: dict) -> None: self.config = config # Dict to determine if analysis is necessary self._last_candle_seen_per_pair: Dict[str, datetime] = {} @abstractmethod def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: """ Populate indicators that will be used in the Buy and Sell strategy :param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe() :param metadata: Additional information, like the currently traded pair :return: a Dataframe with all mandatory indicators for the strategies """ @abstractmethod def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: """ Based on TA indicators, populates the buy signal for the given dataframe :param dataframe: DataFrame :param metadata: Additional information, like the currently traded pair :return: DataFrame with buy column """ @abstractmethod def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: """ Based on TA indicators, populates the sell signal for the given dataframe :param dataframe: DataFrame :param metadata: Additional information, like the currently traded pair :return: DataFrame with sell column """ def informative_pairs(self) -> List[Tuple[str, str]]: """ Define additional, informative pair/interval combinations to be cached from the exchange. These pair/interval combinations are non-tradeable, unless they are part of the whitelist as well. For more information, please consult the documentation :return: List of tuples in the format (pair, interval) Sample: return [("ETH/USDT", "5m"), ("BTC/USDT", "15m"), ] """ return [] def get_strategy_name(self) -> str: """ Returns strategy class name """ return self.__class__.__name__ def analyze_ticker(self, dataframe: DataFrame, metadata: dict) -> DataFrame: """ Parses the given ticker history and returns a populated DataFrame add several TA indicators and buy signal to it :return DataFrame with ticker data and indicator data """ pair = str(metadata.get('pair')) # Test if seen this pair and last candle before. # always run if process_only_new_candles is set to false if (not self.process_only_new_candles or self._last_candle_seen_per_pair.get(pair, None) != dataframe.iloc[-1]['date']): # Defs that only make change on new candle data. logger.debug("TA Analysis Launched") dataframe = self.advise_indicators(dataframe, metadata) dataframe = self.advise_buy(dataframe, metadata) dataframe = self.advise_sell(dataframe, metadata) self._last_candle_seen_per_pair[pair] = dataframe.iloc[-1]['date'] else: logger.debug("Skipping TA Analysis for already analyzed candle") dataframe['buy'] = 0 dataframe['sell'] = 0 # Other Defs in strategy that want to be called every loop here # twitter_sell = self.watch_twitter_feed(dataframe, metadata) logger.debug("Loop Analysis Launched") return dataframe def get_signal(self, pair: str, interval: str, dataframe: DataFrame) -> Tuple[bool, bool]: """ Calculates current signal based several technical analysis indicators :param pair: pair in format ANT/BTC :param interval: Interval to use (in min) :param dataframe: Dataframe to analyze :return: (Buy, Sell) A bool-tuple indicating buy/sell signal """ if not isinstance(dataframe, DataFrame) or dataframe.empty: logger.warning('Empty ticker history for pair %s', pair) return False, False try: dataframe = self.analyze_ticker(dataframe, {'pair': pair}) except ValueError as error: logger.warning( 'Unable to analyze ticker for pair %s: %s', pair, str(error) ) return False, False except Exception as error: logger.exception( 'Unexpected error when analyzing ticker for pair %s: %s', pair, str(error) ) return False, False if dataframe.empty: logger.warning('Empty dataframe for pair %s', pair) return False, False latest = dataframe.iloc[-1] # Check if dataframe is out of date signal_date = arrow.get(latest['date']) interval_minutes = timeframe_to_minutes(interval) offset = self.config.get('exchange', {}).get('outdated_offset', 5) if signal_date < (arrow.utcnow().shift(minutes=-(interval_minutes * 2 + offset))): logger.warning( 'Outdated history for pair %s. Last tick is %s minutes old', pair, (arrow.utcnow() - signal_date).seconds // 60 ) return False, False (buy, sell) = latest[SignalType.BUY.value] == 1, latest[SignalType.SELL.value] == 1 logger.debug( 'trigger: %s (pair=%s) buy=%s sell=%s', latest['date'], pair, str(buy), str(sell) ) return buy, sell def should_sell(self, trade: Trade, rate: float, date: datetime, buy: bool, sell: bool, low: float = None, high: float = None, force_stoploss: float = 0) -> SellCheckTuple: """ This function evaluate if on the condition required to trigger a sell has been reached if the threshold is reached and updates the trade record. :param low: Only used during backtesting to simulate stoploss :param high: Only used during backtesting, to simulate ROI :param force_stoploss: Externally provided stoploss :return: True if trade should be sold, False otherwise """ # Set current rate to low for backtesting sell current_rate = low or rate current_profit = trade.calc_profit_percent(current_rate) trade.adjust_min_max_rates(high or current_rate) stoplossflag = self.stop_loss_reached(current_rate=current_rate, trade=trade, current_time=date, current_profit=current_profit, force_stoploss=force_stoploss, high=high) if stoplossflag.sell_flag: return stoplossflag # Set current rate to high for backtesting sell current_rate = high or rate current_profit = trade.calc_profit_percent(current_rate) experimental = self.config.get('experimental', {}) if buy and experimental.get('ignore_roi_if_buy_signal', False): logger.debug('Buy signal still active - not selling.') return SellCheckTuple(sell_flag=False, sell_type=SellType.NONE) # Check if minimal roi has been reached and no longer in buy conditions (avoiding a fee) if self.min_roi_reached(trade=trade, current_profit=current_profit, current_time=date): logger.debug('Required profit reached. Selling..') return SellCheckTuple(sell_flag=True, sell_type=SellType.ROI) if experimental.get('sell_profit_only', False): logger.debug('Checking if trade is profitable..') if trade.calc_profit(rate=rate) <= 0: return SellCheckTuple(sell_flag=False, sell_type=SellType.NONE) if sell and not buy and experimental.get('use_sell_signal', False): logger.debug('Sell signal received. Selling..') return SellCheckTuple(sell_flag=True, sell_type=SellType.SELL_SIGNAL) return SellCheckTuple(sell_flag=False, sell_type=SellType.NONE) def stop_loss_reached(self, current_rate: float, trade: Trade, current_time: datetime, current_profit: float, force_stoploss: float, high: float = None) -> SellCheckTuple: """ Based on current profit of the trade and configured (trailing) stoploss, decides to sell or not :param current_profit: current profit in percent """ trailing_stop = self.config.get('trailing_stop', False) stop_loss_value = force_stoploss if force_stoploss else self.stoploss # Initiate stoploss with open_rate. Does nothing if stoploss is already set. trade.adjust_stop_loss(trade.open_rate, stop_loss_value, initial=True) if trailing_stop: # trailing stoploss handling sl_offset = self.config.get('trailing_stop_positive_offset') or 0.0 tsl_only_offset = self.config.get('trailing_only_offset_is_reached', False) # Make sure current_profit is calculated using high for backtesting. high_profit = current_profit if not high else trade.calc_profit_percent(high) # Don't update stoploss if trailing_only_offset_is_reached is true. if not (tsl_only_offset and high_profit < sl_offset): # Specific handling for trailing_stop_positive if 'trailing_stop_positive' in self.config and high_profit > sl_offset: # Ignore mypy error check in configuration that this is a float stop_loss_value = self.config.get('trailing_stop_positive') # type: ignore logger.debug(f"using positive stop loss: {stop_loss_value} " f"offset: {sl_offset:.4g} profit: {current_profit:.4f}%") trade.adjust_stop_loss(high or current_rate, stop_loss_value) # evaluate if the stoploss was hit if stoploss is not on exchange if ((self.stoploss is not None) and (trade.stop_loss >= current_rate) and (not self.order_types.get('stoploss_on_exchange'))): selltype = SellType.STOP_LOSS # If initial stoploss is not the same as current one then it is trailing. if trade.initial_stop_loss != trade.stop_loss: selltype = SellType.TRAILING_STOP_LOSS logger.debug( f"HIT STOP: current price at {current_rate:.6f}, " f"stop loss is {trade.stop_loss:.6f}, " f"initial stop loss was at {trade.initial_stop_loss:.6f}, " f"trade opened at {trade.open_rate:.6f}") logger.debug(f"trailing stop saved {trade.stop_loss - trade.initial_stop_loss:.6f}") logger.debug('Stop loss hit.') return SellCheckTuple(sell_flag=True, sell_type=selltype) return SellCheckTuple(sell_flag=False, sell_type=SellType.NONE) def min_roi_reached_entry(self, trade_dur: int) -> Optional[float]: """ Based on trade duration defines the ROI entry that may have been reached. :param trade_dur: trade duration in minutes :return: minimal ROI entry value or None if none proper ROI entry was found. """ # Get highest entry in ROI dict where key <= trade-duration roi_list = list(filter(lambda x: x <= trade_dur, self.minimal_roi.keys())) if not roi_list: return None roi_entry = max(roi_list) return self.minimal_roi[roi_entry] def min_roi_reached(self, trade: Trade, current_profit: float, current_time: datetime) -> bool: """ Based on trade duration, current price and ROI configuration, decides whether bot should sell. Requires current_profit to be in percent!! :return: True if bot should sell at current rate """ # Check if time matches and current rate is above threshold trade_dur = int((current_time.timestamp() - trade.open_date.timestamp()) // 60) roi = self.min_roi_reached_entry(trade_dur) if roi is None: return False else: return current_profit > roi def tickerdata_to_dataframe(self, tickerdata: Dict[str, List]) -> Dict[str, DataFrame]: """ Creates a dataframe and populates indicators for given ticker data """ return {pair: self.advise_indicators(pair_data, {'pair': pair}) for pair, pair_data in tickerdata.items()} def advise_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: """ Populate indicators that will be used in the Buy and Sell strategy This method should not be overridden. :param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe() :param metadata: Additional information, like the currently traded pair :return: a Dataframe with all mandatory indicators for the strategies """ logger.debug(f"Populating indicators for pair {metadata.get('pair')}.") if self._populate_fun_len == 2: warnings.warn("deprecated - check out the Sample strategy to see " "the current function headers!", DeprecationWarning) return self.populate_indicators(dataframe) # type: ignore else: return self.populate_indicators(dataframe, metadata) def advise_buy(self, dataframe: DataFrame, metadata: dict) -> DataFrame: """ Based on TA indicators, populates the buy signal for the given dataframe This method should not be overridden. :param dataframe: DataFrame :param pair: Additional information, like the currently traded pair :return: DataFrame with buy column """ logger.debug(f"Populating buy signals for pair {metadata.get('pair')}.") if self._buy_fun_len == 2: warnings.warn("deprecated - check out the Sample strategy to see " "the current function headers!", DeprecationWarning) return self.populate_buy_trend(dataframe) # type: ignore else: return self.populate_buy_trend(dataframe, metadata) def advise_sell(self, dataframe: DataFrame, metadata: dict) -> DataFrame: """ Based on TA indicators, populates the sell signal for the given dataframe This method should not be overridden. :param dataframe: DataFrame :param pair: Additional information, like the currently traded pair :return: DataFrame with sell column """ logger.debug(f"Populating sell signals for pair {metadata.get('pair')}.") if self._sell_fun_len == 2: warnings.warn("deprecated - check out the Sample strategy to see " "the current function headers!", DeprecationWarning) return self.populate_sell_trend(dataframe) # type: ignore else: return self.populate_sell_trend(dataframe, metadata)