import logging from enum import Enum import numpy as np from gym import spaces from freqtrade.freqai.RL.BaseEnvironment import BaseEnvironment, Positions logger = logging.getLogger(__name__) class Actions(Enum): Neutral = 0 Long_enter = 1 Long_exit = 2 Short_enter = 3 Short_exit = 4 class Base5ActionRLEnv(BaseEnvironment): """ Base class for a 5 action environment """ def set_action_space(self): self.action_space = spaces.Discrete(len(Actions)) def reset(self): self._done = False if self.starting_point is True: self._position_history = (self._start_tick * [None]) + [self._position] else: self._position_history = (self.window_size * [None]) + [self._position] self._current_tick = self._start_tick self._last_trade_tick = None self._position = Positions.Neutral self.total_reward = 0. self._total_profit = 1. # unit self.history = {} self.trade_history = [] self.portfolio_log_returns = np.zeros(len(self.prices)) self._profits = [(self._start_tick, 1)] self.close_trade_profit = [] self._total_unrealized_profit = 1 return self._get_observation() def step(self, action: int): """ Logic for a single step (incrementing one candle in time) by the agent :param: action: int = the action type that the agent plans to take for the current step. :returns: observation = current state of environment step_reward = the reward from `calculate_reward()` _done = if the agent "died" or if the candles finished info = dict passed back to openai gym lib """ self._done = False self._current_tick += 1 if self._current_tick == self._end_tick: self._done = True self._update_unrealized_total_profit() step_reward = self.calculate_reward(action) self.total_reward += step_reward trade_type = None if self.is_tradesignal(action): """ Action: Neutral, position: Long -> Close Long Action: Neutral, position: Short -> Close Short Action: Long, position: Neutral -> Open Long Action: Long, position: Short -> Close Short and Open Long Action: Short, position: Neutral -> Open Short Action: Short, position: Long -> Close Long and Open Short """ if action == Actions.Neutral.value: self._position = Positions.Neutral trade_type = "neutral" self._last_trade_tick = None elif action == Actions.Long_enter.value: self._position = Positions.Long trade_type = "long" self._last_trade_tick = self._current_tick elif action == Actions.Short_enter.value: self._position = Positions.Short trade_type = "short" self._last_trade_tick = self._current_tick elif action == Actions.Long_exit.value: self._update_total_profit() self._position = Positions.Neutral trade_type = "neutral" self._last_trade_tick = None elif action == Actions.Short_exit.value: self._update_total_profit() self._position = Positions.Neutral trade_type = "neutral" self._last_trade_tick = None else: print("case not defined") if trade_type is not None: self.trade_history.append( {'price': self.current_price(), 'index': self._current_tick, 'type': trade_type}) if (self._total_profit < self.max_drawdown or self._total_unrealized_profit < self.max_drawdown): self._done = True self._position_history.append(self._position) info = dict( tick=self._current_tick, total_reward=self.total_reward, total_profit=self._total_profit, position=self._position.value ) observation = self._get_observation() self._update_history(info) return observation, step_reward, self._done, info def get_trade_duration(self): if self._last_trade_tick is None: return 0 else: return self._current_tick - self._last_trade_tick def is_tradesignal(self, action: int) -> bool: """ Determine if the signal is a trade signal e.g.: agent wants a Actions.Long_exit while it is in a Positions.short """ return not ((action == Actions.Neutral.value and self._position == Positions.Neutral) or (action == Actions.Neutral.value and self._position == Positions.Short) or (action == Actions.Neutral.value and self._position == Positions.Long) or (action == Actions.Short_enter.value and self._position == Positions.Short) or (action == Actions.Short_enter.value and self._position == Positions.Long) or (action == Actions.Short_exit.value and self._position == Positions.Long) or (action == Actions.Short_exit.value and self._position == Positions.Neutral) or (action == Actions.Long_enter.value and self._position == Positions.Long) or (action == Actions.Long_enter.value and self._position == Positions.Short) or (action == Actions.Long_exit.value and self._position == Positions.Short) or (action == Actions.Long_exit.value and self._position == Positions.Neutral)) def _is_valid(self, action: int) -> bool: # trade signal """ Determine if the signal is valid. e.g.: agent wants a Actions.Long_exit while it is in a Positions.short """ # Agent should only try to exit if it is in position if action in (Actions.Short_exit.value, Actions.Long_exit.value): if self._position not in (Positions.Short, Positions.Long): return False # Agent should only try to enter if it is not in position if action in (Actions.Short_enter.value, Actions.Long_enter.value): if self._position != Positions.Neutral: return False return True