# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement

from functools import reduce
from typing import Any, Callable, Dict, List
from datetime import datetime

import numpy as np
import talib.abstract as ta
from pandas import DataFrame
from skopt.space import Categorical, Dimension, Integer, Real

import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.optimize.hyperopt_interface import IHyperOpt


class SampleHyperOpts(IHyperOpt):
    """
    This is a sample Hyperopt to inspire you.
    Feel free to customize it.

    More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md

    You should:
    - Rename the class name to some unique name.
    - Add any methods you want to build your hyperopt.
    - Add any lib you need to build your hyperopt.

    You must keep:
    - The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.

    The roi_space, generate_roi_table, stoploss_space methods are no longer required to be
    copied in every custom hyperopt. However, you may override them if you need the
    'roi' and the 'stoploss' spaces that differ from the defaults offered by Freqtrade.
    Sample implementation of these methods can be found in
    https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/sample_hyperopt_advanced.py
    """
    @staticmethod
    def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
        """
        Add several indicators needed for buy and sell strategies defined below.
        """
        # ADX
        dataframe['adx'] = ta.ADX(dataframe)
        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        # MFI
        dataframe['mfi'] = ta.MFI(dataframe)
        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)
        # Stochastic Fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        # Minus-DI
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)
        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_upperband'] = bollinger['upper']
        # SAR
        dataframe['sar'] = ta.SAR(dataframe)

        return dataframe

    @staticmethod
    def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
        """
        Define the buy strategy parameters to be used by Hyperopt.
        """
        def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
            """
            Buy strategy Hyperopt will build and use.
            """
            conditions = []

            # GUARDS AND TRENDS
            if 'mfi-enabled' in params and params['mfi-enabled']:
                conditions.append(dataframe['mfi'] < params['mfi-value'])
            if 'fastd-enabled' in params and params['fastd-enabled']:
                conditions.append(dataframe['fastd'] < params['fastd-value'])
            if 'adx-enabled' in params and params['adx-enabled']:
                conditions.append(dataframe['adx'] > params['adx-value'])
            if 'rsi-enabled' in params and params['rsi-enabled']:
                conditions.append(dataframe['rsi'] < params['rsi-value'])

            # TRIGGERS
            if 'trigger' in params:
                if params['trigger'] == 'bb_lower':
                    conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
                if params['trigger'] == 'macd_cross_signal':
                    conditions.append(qtpylib.crossed_above(
                        dataframe['macd'], dataframe['macdsignal']
                    ))
                if params['trigger'] == 'sar_reversal':
                    conditions.append(qtpylib.crossed_above(
                        dataframe['close'], dataframe['sar']
                    ))

            if conditions:
                dataframe.loc[
                    reduce(lambda x, y: x & y, conditions),
                    'buy'] = 1

            return dataframe

        return populate_buy_trend

    @staticmethod
    def indicator_space() -> List[Dimension]:
        """
        Define your Hyperopt space for searching buy strategy parameters.
        """
        return [
            Integer(10, 25, name='mfi-value'),
            Integer(15, 45, name='fastd-value'),
            Integer(20, 50, name='adx-value'),
            Integer(20, 40, name='rsi-value'),
            Categorical([True, False], name='mfi-enabled'),
            Categorical([True, False], name='fastd-enabled'),
            Categorical([True, False], name='adx-enabled'),
            Categorical([True, False], name='rsi-enabled'),
            Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
        ]

    @staticmethod
    def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
        """
        Define the sell strategy parameters to be used by Hyperopt.
        """
        def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
            """
            Sell strategy Hyperopt will build and use.
            """
            conditions = []

            # GUARDS AND TRENDS
            if 'sell-mfi-enabled' in params and params['sell-mfi-enabled']:
                conditions.append(dataframe['mfi'] > params['sell-mfi-value'])
            if 'sell-fastd-enabled' in params and params['sell-fastd-enabled']:
                conditions.append(dataframe['fastd'] > params['sell-fastd-value'])
            if 'sell-adx-enabled' in params and params['sell-adx-enabled']:
                conditions.append(dataframe['adx'] < params['sell-adx-value'])
            if 'sell-rsi-enabled' in params and params['sell-rsi-enabled']:
                conditions.append(dataframe['rsi'] > params['sell-rsi-value'])

            # TRIGGERS
            if 'sell-trigger' in params:
                if params['sell-trigger'] == 'sell-bb_upper':
                    conditions.append(dataframe['close'] > dataframe['bb_upperband'])
                if params['sell-trigger'] == 'sell-macd_cross_signal':
                    conditions.append(qtpylib.crossed_above(
                        dataframe['macdsignal'], dataframe['macd']
                    ))
                if params['sell-trigger'] == 'sell-sar_reversal':
                    conditions.append(qtpylib.crossed_above(
                        dataframe['sar'], dataframe['close']
                    ))

            if conditions:
                dataframe.loc[
                    reduce(lambda x, y: x & y, conditions),
                    'sell'] = 1

            return dataframe

        return populate_sell_trend

    @staticmethod
    def sell_indicator_space() -> List[Dimension]:
        """
        Define your Hyperopt space for searching sell strategy parameters.
        """
        return [
            Integer(75, 100, name='sell-mfi-value'),
            Integer(50, 100, name='sell-fastd-value'),
            Integer(50, 100, name='sell-adx-value'),
            Integer(60, 100, name='sell-rsi-value'),
            Categorical([True, False], name='sell-mfi-enabled'),
            Categorical([True, False], name='sell-fastd-enabled'),
            Categorical([True, False], name='sell-adx-enabled'),
            Categorical([True, False], name='sell-rsi-enabled'),
            Categorical(['sell-bb_upper',
                         'sell-macd_cross_signal',
                         'sell-sar_reversal'], name='sell-trigger')
        ]

    def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        """
        Based on TA indicators. Should be a copy of same method from strategy.
        Must align to populate_indicators in this file.
        Only used when --spaces does not include buy space.
        """
        dataframe.loc[
            (
                (dataframe['close'] < dataframe['bb_lowerband']) &
                (dataframe['mfi'] < 16) &
                (dataframe['adx'] > 25) &
                (dataframe['rsi'] < 21)
            ),
            'buy'] = 1

        return dataframe

    def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        """
        Based on TA indicators. Should be a copy of same method from strategy.
        Must align to populate_indicators in this file.
        Only used when --spaces does not include sell space.
        """
        dataframe.loc[
            (
                (qtpylib.crossed_above(
                    dataframe['macdsignal'], dataframe['macd']
                )) &
                (dataframe['fastd'] > 54)
            ),
            'sell'] = 1

        return dataframe