# pragma pylint: disable=attribute-defined-outside-init """ This module load custom hyperopts """ import logging from pathlib import Path from typing import Optional, Dict from freqtrade import OperationalException from freqtrade.constants import DEFAULT_HYPEROPT, DEFAULT_HYPEROPT_LOSS from freqtrade.optimize.hyperopt_interface import IHyperOpt from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss from freqtrade.resolvers import IResolver logger = logging.getLogger(__name__) class HyperOptResolver(IResolver): """ This class contains all the logic to load custom hyperopt class """ __slots__ = ['hyperopt'] def __init__(self, config: Optional[Dict] = None) -> None: """ Load the custom class from config parameter :param config: configuration dictionary or None """ config = config or {} # Verify the hyperopt is in the configuration, otherwise fallback to the default hyperopt hyperopt_name = config.get('hyperopt') or DEFAULT_HYPEROPT self.hyperopt = self._load_hyperopt(hyperopt_name, extra_dir=config.get('hyperopt_path')) # Assign ticker_interval to be used in hyperopt self.hyperopt.__class__.ticker_interval = str(config['ticker_interval']) if not hasattr(self.hyperopt, 'populate_buy_trend'): logger.warning("Custom Hyperopt does not provide populate_buy_trend. " "Using populate_buy_trend from DefaultStrategy.") if not hasattr(self.hyperopt, 'populate_sell_trend'): logger.warning("Custom Hyperopt does not provide populate_sell_trend. " "Using populate_sell_trend from DefaultStrategy.") def _load_hyperopt( self, hyperopt_name: str, extra_dir: Optional[str] = None) -> IHyperOpt: """ Search and loads the specified hyperopt. :param hyperopt_name: name of the module to import :param extra_dir: additional directory to search for the given hyperopt :return: HyperOpt instance or None """ current_path = Path(__file__).parent.parent.joinpath('optimize').resolve() abs_paths = [ current_path.parent.parent.joinpath('user_data/hyperopts'), current_path, ] if extra_dir: # Add extra hyperopt directory on top of search paths abs_paths.insert(0, Path(extra_dir)) for _path in abs_paths: try: (hyperopt, module_path) = self._search_object(directory=_path, object_type=IHyperOpt, object_name=hyperopt_name) if hyperopt: logger.info(f"Using resolved hyperopt {hyperopt_name} from '{module_path}'...") return hyperopt except FileNotFoundError: logger.warning('Path "%s" does not exist.', _path.relative_to(Path.cwd())) raise OperationalException( f"Impossible to load Hyperopt '{hyperopt_name}'. This class does not exist " "or contains Python code errors." ) class HyperOptLossResolver(IResolver): """ This class contains all the logic to load custom hyperopt loss class """ __slots__ = ['hyperoptloss'] def __init__(self, config: Optional[Dict] = None) -> None: """ Load the custom class from config parameter :param config: configuration dictionary or None """ config = config or {} # Verify the hyperopt is in the configuration, otherwise fallback to the default hyperopt hyperopt_name = config.get('hyperopt_loss') or DEFAULT_HYPEROPT_LOSS self.hyperoptloss = self._load_hyperoptloss( hyperopt_name, extra_dir=config.get('hyperopt_path')) # Assign ticker_interval to be used in hyperopt self.hyperoptloss.__class__.ticker_interval = str(config['ticker_interval']) if not hasattr(self.hyperoptloss, 'hyperopt_loss_function'): raise OperationalException( f"Found hyperopt {hyperopt_name} does not implement `hyperopt_loss_function`.") def _load_hyperoptloss( self, hyper_loss_name: str, extra_dir: Optional[str] = None) -> IHyperOptLoss: """ Search and loads the specified hyperopt loss class. :param hyper_loss_name: name of the module to import :param extra_dir: additional directory to search for the given hyperopt :return: HyperOptLoss instance or None """ current_path = Path(__file__).parent.parent.joinpath('optimize').resolve() abs_paths = [ current_path.parent.parent.joinpath('user_data/hyperopts'), current_path, ] if extra_dir: # Add extra hyperopt directory on top of search paths abs_paths.insert(0, Path(extra_dir)) for _path in abs_paths: try: (hyperoptloss, module_path) = self._search_object(directory=_path, object_type=IHyperOptLoss, object_name=hyper_loss_name) if hyperoptloss: logger.info( f"Using resolved hyperopt {hyper_loss_name} from '{module_path}'...") return hyperoptloss except FileNotFoundError: logger.warning('Path "%s" does not exist.', _path.relative_to(Path.cwd())) raise OperationalException( f"Impossible to load HyperoptLoss '{hyper_loss_name}'. This class does not exist " "or contains Python code errors." )