# --- Do not remove these libs --- from freqtrade.strategy.interface import IStrategy from typing import Dict, List from functools import reduce from pandas import DataFrame # -------------------------------- import talib.abstract as ta import freqtrade.vendor.qtpylib.indicators as qtpylib class InformativeSample(IStrategy): """ Sample strategy implementing Informative Pairs - compares stake_currency with USDT. Not performing very well - but should serve as an example how to use a referential pair against USDT. author@: xmatthias github@: https://github.com/freqtrade/freqtrade-strategies How to use it? > python3 freqtrade -s InformativeSample """ # Minimal ROI designed for the strategy. # This attribute will be overridden if the config file contains "minimal_roi" minimal_roi = { "60": 0.01, "30": 0.03, "20": 0.04, "0": 0.05 } # Optimal stoploss designed for the strategy # This attribute will be overridden if the config file contains "stoploss" stoploss = -0.10 # Optimal timeframe for the strategy timeframe = '5m' # trailing stoploss trailing_stop = False trailing_stop_positive = 0.01 trailing_stop_positive_offset = 0.02 # run "populate_indicators" only for new candle ta_on_candle = False # Experimental settings (configuration will overide these if set) use_sell_signal = True sell_profit_only = True ignore_roi_if_buy_signal = False # Optional order type mapping order_types = { 'buy': 'limit', 'sell': 'limit', 'stoploss': 'market', 'stoploss_on_exchange': False } def informative_pairs(self): """ Define additional, informative pair/interval combinations to be cached from the exchange. These pair/interval combinations are non-tradeable, unless they are part of the whitelist as well. For more information, please consult the documentation :return: List of tuples in the format (pair, interval) Sample: return [("ETH/USDT", "5m"), ("BTC/USDT", "15m"), ] """ return [(f"{self.config['stake_currency']}/USDT", self.timeframe)] def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: """ Adds several different TA indicators to the given DataFrame Performance Note: For the best performance be frugal on the number of indicators you are using. Let uncomment only the indicator you are using in your strategies or your hyperopt configuration, otherwise you will waste your memory and CPU usage. """ dataframe['ema20'] = ta.EMA(dataframe, timeperiod=20) dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50) dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100) if self.dp: # Get ohlcv data for informative pair. data = self.dp.get_pair_dataframe(pair=f"{self.stake_currency}/USDT", timeframe=self.timeframe) # Combine the 2 dataframes using 'close'. # This will result in a column named 'closeETH' or 'closeBTC' - depending on stake_currency. dataframe = dataframe.merge(data[["date", "close"]], on="date", how="left", suffixes=("", self.config['stake_currency'])) # Calculate SMA20 on 'close' data for stake_currency/USDT. Resulting column is named as 'smaETH20' (if stake_currency is ETH) dataframe[f"sma{self.config['stake_currency']}20"] = dataframe[f'close{self.stake_currency}'].rolling(20).mean() return dataframe def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: """ Based on TA indicators, populates the buy signal for the given dataframe :param dataframe: DataFrame :return: DataFrame with buy column """ dataframe.loc[ ( (dataframe['ema20'] > dataframe['ema50']) & # stake/USDT above sma(stake/USDT, 20) (dataframe[f'close{self.stake_currency}'] > dataframe[f'sma{self.stake_currency}20']) ), 'buy'] = 1 return dataframe def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: """ Based on TA indicators, populates the sell signal for the given dataframe :param dataframe: DataFrame :return: DataFrame with buy column """ dataframe.loc[ ( (dataframe['ema20'] < dataframe['ema50']) & # stake/USDT below sma(stake/USDT, 20) (dataframe[f'close{self.stake_currency}'] < dataframe[f'sma{self.stake_currency}20']) ), 'sell'] = 1 return dataframe