# pragma pylint: disable=W0603 """ Edge positioning package """ import logging from typing import Any, Dict import arrow import numpy as np import utils_find_1st as utf1st from pandas import DataFrame import freqtrade.optimize as optimize from freqtrade.arguments import Arguments from freqtrade.arguments import TimeRange from freqtrade.strategy.interface import SellType from freqtrade.strategy.resolver import IStrategy, StrategyResolver from collections import namedtuple logger = logging.getLogger(__name__) class Edge(): """ Calculates Win Rate, Risk Reward Ratio, Expectancy against historical data for a give set of markets and a strategy it then adjusts stoploss and position size accordingly and force it into the strategy Author: https://github.com/mishaker """ config: Dict = {} _cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs def __init__(self, config: Dict[str, Any], exchange=None) -> None: self.config = config self.exchange = exchange self.strategy: IStrategy = StrategyResolver(self.config).strategy self.ticker_interval = self.strategy.ticker_interval self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe self.get_timeframe = optimize.get_timeframe self.advise_sell = self.strategy.advise_sell self.advise_buy = self.strategy.advise_buy self.edge_config = self.config.get('edge', {}) # pair info data type self._pair_info = namedtuple( 'pair_info', 'stoploss, winrate, risk_reward_ratio, required_risk_reward, expectancy') self._cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs self._total_capital: float = self.edge_config.get('total_capital_in_stake_currency') self._allowed_risk: float = self.edge_config.get('allowed_risk') self._since_number_of_days: int = self.edge_config.get('calculate_since_number_of_days', 14) self._last_updated: int = 0 # Timestamp of pairs last updated time self._stoploss_range_min = float(self.edge_config.get('stoploss_range_min', -0.01)) self._stoploss_range_max = float(self.edge_config.get('stoploss_range_max', -0.05)) self._stoploss_range_step = float(self.edge_config.get('stoploss_range_step', -0.001)) # calculating stoploss range self._stoploss_range = np.arange( self._stoploss_range_min, self._stoploss_range_max, self._stoploss_range_step ) self._timerange: TimeRange = Arguments.parse_timerange("%s-" % arrow.now().shift( days=-1 * self._since_number_of_days).format('YYYYMMDD')) self.fee = self.exchange.get_fee() def calculate(self) -> bool: pairs = self.config['exchange']['pair_whitelist'] heartbeat = self.edge_config.get('process_throttle_secs') if (self._last_updated > 0) and ( self._last_updated + heartbeat > arrow.utcnow().timestamp): return False data: Dict[str, Any] = {} logger.info('Using stake_currency: %s ...', self.config['stake_currency']) logger.info('Using local backtesting data (using whitelist in given config) ...') data = optimize.load_data( self.config['datadir'], pairs=pairs, ticker_interval=self.ticker_interval, refresh_pairs=True, exchange=self.exchange, timerange=self._timerange ) if not data: logger.critical("No data found. Edge is stopped ...") return False preprocessed = self.tickerdata_to_dataframe(data) # Print timeframe min_date, max_date = self.get_timeframe(preprocessed) logger.info( 'Measuring data from %s up to %s (%s days) ...', min_date.isoformat(), max_date.isoformat(), (max_date - min_date).days ) headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low'] trades: list = [] for pair, pair_data in preprocessed.items(): # Sorting dataframe by date and reset index pair_data = pair_data.sort_values(by=['date']) pair_data = pair_data.reset_index(drop=True) ticker_data = self.advise_sell( self.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy() trades += self._find_trades_for_stoploss_range(ticker_data, pair, self._stoploss_range) # If no trade found then exit if len(trades) == 0: return False # Fill missing, calculable columns, profit, duration , abs etc. trades_df = self._fill_calculable_fields(DataFrame(trades)) self._cached_pairs = self._process_expectancy(trades_df) self._last_updated = arrow.utcnow().timestamp # Not a nice hack but probably simplest solution: # When backtest load data it loads the delta between disk and exchange # The problem is that exchange consider that recent. # it is but it is incomplete (c.f. _async_get_candle_history) # So it causes get_signal to exit cause incomplete ticker_hist # A patch to that would be update _pairs_last_refresh_time of exchange # so it will download again all pairs # Another solution is to add new data to klines instead of reassigning it: # self.klines[pair].update(data) instead of self.klines[pair] = data in exchange package. # But that means indexing timestamp and having a verification so that # there is no empty range between two timestaps (recently added and last # one) self.exchange._pairs_last_refresh_time = {} return True def stake_amount(self, pair: str) -> float: stoploss = self._cached_pairs[pair].stoploss allowed_capital_at_risk = round(self._total_capital * self._allowed_risk, 5) position_size = abs(round((allowed_capital_at_risk / stoploss), 5)) return position_size def stoploss(self, pair: str) -> float: return self._cached_pairs[pair].stoploss def filter(self, pairs) -> list: final = [] for pair, info in self._cached_pairs.items(): if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \ info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)) and \ pair in pairs: final.append(pair) if final: logger.info( 'Edge validated only %s', final ) else: logger.info('Edge removed all pairs as no pair with minimum expectancy was found !') return final def _fill_calculable_fields(self, result: DataFrame) -> DataFrame: """ The result frame contains a number of columns that are calculable from other columns. These are left blank till all rows are added, to be populated in single vector calls. Columns to be populated are: - Profit - trade duration - profit abs :param result Dataframe :return: result Dataframe """ # stake and fees # stake = 0.015 # 0.05% is 0.0005 # fee = 0.001 stake = self.config.get('stake_amount') fee = self.fee open_fee = fee / 2 close_fee = fee / 2 result['trade_duration'] = result['close_time'] - result['open_time'] result['trade_duration'] = result['trade_duration'].map( lambda x: int(x.total_seconds() / 60)) # Spends, Takes, Profit, Absolute Profit # Buy Price result['buy_vol'] = stake / result['open_rate'] # How many target are we buying result['buy_fee'] = stake * open_fee result['buy_spend'] = stake + result['buy_fee'] # How much we're spending # Sell price result['sell_sum'] = result['buy_vol'] * result['close_rate'] result['sell_fee'] = result['sell_sum'] * close_fee result['sell_take'] = result['sell_sum'] - result['sell_fee'] # profit_percent result['profit_percent'] = (result['sell_take'] - result['buy_spend']) / result['buy_spend'] # Absolute profit result['profit_abs'] = result['sell_take'] - result['buy_spend'] return result def _process_expectancy(self, results: DataFrame) -> Dict[str, Any]: """ This calculates WinRate, Required Risk Reward, Risk Reward and Expectancy of all pairs The calulation will be done per pair and per strategy. """ # Removing pairs having less than min_trades_number min_trades_number = self.edge_config.get('min_trade_number', 10) results = results.groupby(['pair', 'stoploss']).filter(lambda x: len(x) > min_trades_number) ################################### # Removing outliers (Only Pumps) from the dataset # The method to detect outliers is to calculate standard deviation # Then every value more than (standard deviation + 2*average) is out (pump) # # Removing Pumps if self.edge_config.get('remove_pumps', False): results = results.groupby(['pair', 'stoploss']).apply( lambda x: x[x['profit_abs'] < 2 * x['profit_abs'].std() + x['profit_abs'].mean()]) ########################################################################## # Removing trades having a duration more than X minutes (set in config) max_trade_duration = self.edge_config.get('max_trade_duration_minute', 1440) results = results[results.trade_duration < max_trade_duration] ####################################################################### if results.empty: return {} groupby_aggregator = { 'profit_abs': [ ('nb_trades', 'count'), # number of all trades ('profit_sum', lambda x: x[x > 0].sum()), # cumulative profit of all winning trades ('loss_sum', lambda x: abs(x[x < 0].sum())), # cumulative loss of all losing trades ('nb_win_trades', lambda x: x[x > 0].count()) # number of winning trades ], 'trade_duration': [('avg_trade_duration', 'mean')] } # Group by (pair and stoploss) by applying above aggregator df = results.groupby(['pair', 'stoploss'])['profit_abs', 'trade_duration'].agg( groupby_aggregator).reset_index(col_level=1) # Dropping level 0 as we don't need it df.columns = df.columns.droplevel(0) # Calculating number of losing trades, average win and average loss df['nb_loss_trades'] = df['nb_trades'] - df['nb_win_trades'] df['average_win'] = df['profit_sum'] / df['nb_win_trades'] df['average_loss'] = df['loss_sum'] / df['nb_loss_trades'] # Win rate = number of profitable trades / number of trades df['winrate'] = df['nb_win_trades'] / df['nb_trades'] # risk_reward_ratio = average win / average loss df['risk_reward_ratio'] = df['average_win'] / df['average_loss'] # required_risk_reward = (1 / winrate) - 1 df['required_risk_reward'] = (1 / df['winrate']) - 1 # expectancy = (risk_reward_ratio * winrate) - (lossrate) df['expectancy'] = (df['risk_reward_ratio'] * df['winrate']) - (1 - df['winrate']) # sort by expectancy and stoploss df = df.sort_values(by=['expectancy', 'stoploss'], ascending=False).groupby( 'pair').first().sort_values(by=['expectancy'], ascending=False).reset_index() final = {} for x in df.itertuples(): info = { 'stoploss': x.stoploss, 'winrate': x.winrate, 'risk_reward_ratio': x.risk_reward_ratio, 'required_risk_reward': x.required_risk_reward, 'expectancy': x.expectancy } final[x.pair] = self._pair_info(**info) # Returning a list of pairs in order of "expectancy" return final def _find_trades_for_stoploss_range(self, ticker_data, pair, stoploss_range): buy_column = ticker_data['buy'].values sell_column = ticker_data['sell'].values date_column = ticker_data['date'].values ohlc_columns = ticker_data[['open', 'high', 'low', 'close']].values result: list = [] for stoploss in stoploss_range: result += self._detect_next_stop_or_sell_point( buy_column, sell_column, date_column, ohlc_columns, round(stoploss, 6), pair ) return result def _detect_next_stop_or_sell_point( self, buy_column, sell_column, date_column, ohlc_columns, stoploss, pair, start_point=0): result: list = [] open_trade_index = utf1st.find_1st(buy_column, 1, utf1st.cmp_equal) # return empty if we don't find trade entry (i.e. buy==1) or # we find a buy but at the of array if open_trade_index == -1 or open_trade_index == len(buy_column) - 1: return [] else: open_trade_index += 1 # when a buy signal is seen, # trade opens in reality on the next candle stop_price_percentage = stoploss + 1 open_price = ohlc_columns[open_trade_index, 0] stop_price = (open_price * stop_price_percentage) # Searching for the index where stoploss is hit stop_index = utf1st.find_1st( ohlc_columns[open_trade_index:, 2], stop_price, utf1st.cmp_smaller) # If we don't find it then we assume stop_index will be far in future (infinite number) if stop_index == -1: stop_index = float('inf') # Searching for the index where sell is hit sell_index = utf1st.find_1st(sell_column[open_trade_index:], 1, utf1st.cmp_equal) # If we don't find it then we assume sell_index will be far in future (infinite number) if sell_index == -1: sell_index = float('inf') # Check if we don't find any stop or sell point (in that case trade remains open) # It is not interesting for Edge to consider it so we simply ignore the trade # And stop iterating there is no more entry if stop_index == sell_index == float('inf'): return [] if stop_index <= sell_index: exit_index = open_trade_index + stop_index exit_type = SellType.STOP_LOSS exit_price = stop_price elif stop_index > sell_index: # if exit is SELL then we exit at the next candle exit_index = open_trade_index + sell_index + 1 # check if we have the next candle if len(ohlc_columns) - 1 < exit_index: return [] exit_type = SellType.SELL_SIGNAL exit_price = ohlc_columns[exit_index, 0] trade = {'pair': pair, 'stoploss': stoploss, 'profit_percent': '', 'profit_abs': '', 'open_time': date_column[open_trade_index], 'close_time': date_column[exit_index], 'open_index': start_point + open_trade_index, 'close_index': start_point + exit_index, 'trade_duration': '', 'open_rate': round(open_price, 15), 'close_rate': round(exit_price, 15), 'exit_type': exit_type } result.append(trade) # Calling again the same function recursively but giving # it a view of exit_index till the end of array return result + self._detect_next_stop_or_sell_point( buy_column[exit_index:], sell_column[exit_index:], date_column[exit_index:], ohlc_columns[exit_index:], stoploss, pair, (start_point + exit_index) )