""" This module contains class to define a RPC communications """ import logging from abc import abstractmethod from datetime import date, datetime, timedelta, timezone from enum import Enum from math import isnan from typing import Any, Dict, List, Optional, Tuple, Union import arrow from numpy import NAN, inf, int64, mean from pandas import DataFrame from freqtrade.configuration.timerange import TimeRange from freqtrade.constants import CANCEL_REASON, DATETIME_PRINT_FORMAT from freqtrade.data.history import load_data from freqtrade.exceptions import ExchangeError, PricingError from freqtrade.exchange import timeframe_to_minutes, timeframe_to_msecs from freqtrade.loggers import bufferHandler from freqtrade.misc import shorten_date from freqtrade.persistence import PairLocks, Trade from freqtrade.persistence.models import PairLock from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist from freqtrade.rpc.fiat_convert import CryptoToFiatConverter from freqtrade.state import State from freqtrade.strategy.interface import SellCheckTuple, SellType logger = logging.getLogger(__name__) class RPCMessageType(Enum): STATUS = 'status' WARNING = 'warning' STARTUP = 'startup' BUY = 'buy' BUY_FILL = 'buy_fill' BUY_CANCEL = 'buy_cancel' SELL = 'sell' SELL_FILL = 'sell_fill' SELL_CANCEL = 'sell_cancel' def __repr__(self): return self.value def __str__(self): return self.value class RPCException(Exception): """ Should be raised with a rpc-formatted message in an _rpc_* method if the required state is wrong, i.e.: raise RPCException('*Status:* `no active trade`') """ def __init__(self, message: str) -> None: super().__init__(self) self.message = message def __str__(self): return self.message def __json__(self): return { 'msg': self.message } class RPCHandler: def __init__(self, rpc: 'RPC', config: Dict[str, Any]) -> None: """ Initializes RPCHandlers :param rpc: instance of RPC Helper class :param config: Configuration object :return: None """ self._rpc = rpc self._config: Dict[str, Any] = config @property def name(self) -> str: """ Returns the lowercase name of the implementation """ return self.__class__.__name__.lower() @abstractmethod def cleanup(self) -> None: """ Cleanup pending module resources """ @abstractmethod def send_msg(self, msg: Dict[str, str]) -> None: """ Sends a message to all registered rpc modules """ class RPC: """ RPC class can be used to have extra feature, like bot data, and access to DB data """ # Bind _fiat_converter if needed _fiat_converter: Optional[CryptoToFiatConverter] = None def __init__(self, freqtrade) -> None: """ Initializes all enabled rpc modules :param freqtrade: Instance of a freqtrade bot :return: None """ self._freqtrade = freqtrade self._config: Dict[str, Any] = freqtrade.config if self._config.get('fiat_display_currency', None): self._fiat_converter = CryptoToFiatConverter() @staticmethod def _rpc_show_config(config, botstate: Union[State, str]) -> Dict[str, Any]: """ Return a dict of config options. Explicitly does NOT return the full config to avoid leakage of sensitive information via rpc. """ val = { 'dry_run': config['dry_run'], 'stake_currency': config['stake_currency'], 'stake_amount': config['stake_amount'], 'max_open_trades': (config['max_open_trades'] if config['max_open_trades'] != float('inf') else -1), 'minimal_roi': config['minimal_roi'].copy() if 'minimal_roi' in config else {}, 'stoploss': config.get('stoploss'), 'trailing_stop': config.get('trailing_stop'), 'trailing_stop_positive': config.get('trailing_stop_positive'), 'trailing_stop_positive_offset': config.get('trailing_stop_positive_offset'), 'trailing_only_offset_is_reached': config.get('trailing_only_offset_is_reached'), 'use_custom_stoploss': config.get('use_custom_stoploss'), 'bot_name': config.get('bot_name', 'freqtrade'), 'timeframe': config.get('timeframe'), 'timeframe_ms': timeframe_to_msecs(config['timeframe'] ) if 'timeframe' in config else '', 'timeframe_min': timeframe_to_minutes(config['timeframe'] ) if 'timeframe' in config else '', 'exchange': config['exchange']['name'], 'strategy': config['strategy'], 'forcebuy_enabled': config.get('forcebuy_enable', False), 'ask_strategy': config.get('ask_strategy', {}), 'bid_strategy': config.get('bid_strategy', {}), 'state': str(botstate), 'runmode': config['runmode'].value } return val def _rpc_trade_status(self, trade_ids: List[int] = []) -> List[Dict[str, Any]]: """ Below follows the RPC backend it is prefixed with rpc_ to raise awareness that it is a remotely exposed function """ # Fetch open trades if trade_ids: trades = Trade.get_trades(trade_filter=Trade.id.in_(trade_ids)).all() else: trades = Trade.get_open_trades() if not trades: raise RPCException('no active trade') else: results = [] for trade in trades: order = None if trade.open_order_id: order = self._freqtrade.exchange.fetch_order(trade.open_order_id, trade.pair) # calculate profit and send message to user if trade.is_open: try: current_rate = self._freqtrade.get_sell_rate(trade.pair, False) except (ExchangeError, PricingError): current_rate = NAN else: current_rate = trade.close_rate current_profit = trade.calc_profit_ratio(current_rate) current_profit_abs = trade.calc_profit(current_rate) # Calculate fiat profit if self._fiat_converter: current_profit_fiat = self._fiat_converter.convert_amount( current_profit_abs, self._freqtrade.config['stake_currency'], self._freqtrade.config['fiat_display_currency'] ) # Calculate guaranteed profit (in case of trailing stop) stoploss_entry_dist = trade.calc_profit(trade.stop_loss) stoploss_entry_dist_ratio = trade.calc_profit_ratio(trade.stop_loss) # calculate distance to stoploss stoploss_current_dist = trade.stop_loss - current_rate stoploss_current_dist_ratio = stoploss_current_dist / current_rate trade_dict = trade.to_json() trade_dict.update(dict( base_currency=self._freqtrade.config['stake_currency'], close_profit=trade.close_profit if trade.close_profit is not None else None, current_rate=current_rate, current_profit=current_profit, # Deprectated current_profit_pct=round(current_profit * 100, 2), # Deprectated current_profit_abs=current_profit_abs, # Deprectated profit_ratio=current_profit, profit_pct=round(current_profit * 100, 2), profit_abs=current_profit_abs, profit_fiat=current_profit_fiat, stoploss_current_dist=stoploss_current_dist, stoploss_current_dist_ratio=round(stoploss_current_dist_ratio, 8), stoploss_current_dist_pct=round(stoploss_current_dist_ratio * 100, 2), stoploss_entry_dist=stoploss_entry_dist, stoploss_entry_dist_ratio=round(stoploss_entry_dist_ratio, 8), open_order='({} {} rem={:.8f})'.format( order['type'], order['side'], order['remaining'] ) if order else None, )) results.append(trade_dict) return results def _rpc_status_table(self, stake_currency: str, fiat_display_currency: str) -> Tuple[List, List]: trades = Trade.get_open_trades() if not trades: raise RPCException('no active trade') else: trades_list = [] for trade in trades: # calculate profit and send message to user try: current_rate = self._freqtrade.get_sell_rate(trade.pair, False) except (PricingError, ExchangeError): current_rate = NAN trade_percent = (100 * trade.calc_profit_ratio(current_rate)) trade_profit = trade.calc_profit(current_rate) profit_str = f'{trade_percent:.2f}%' if self._fiat_converter: fiat_profit = self._fiat_converter.convert_amount( trade_profit, stake_currency, fiat_display_currency ) if fiat_profit and not isnan(fiat_profit): profit_str += f" ({fiat_profit:.2f})" trades_list.append([ trade.id, trade.pair + ('*' if (trade.open_order_id is not None and trade.close_rate_requested is None) else '') + ('**' if (trade.close_rate_requested is not None) else ''), shorten_date(arrow.get(trade.open_date).humanize(only_distance=True)), profit_str ]) profitcol = "Profit" if self._fiat_converter: profitcol += " (" + fiat_display_currency + ")" columns = ['ID', 'Pair', 'Since', profitcol] return trades_list, columns def _rpc_daily_profit( self, timescale: int, stake_currency: str, fiat_display_currency: str) -> Dict[str, Any]: today = datetime.utcnow().date() profit_days: Dict[date, Dict] = {} if not (isinstance(timescale, int) and timescale > 0): raise RPCException('timescale must be an integer greater than 0') for day in range(0, timescale): profitday = today - timedelta(days=day) trades = Trade.get_trades(trade_filter=[ Trade.is_open.is_(False), Trade.close_date >= profitday, Trade.close_date < (profitday + timedelta(days=1)) ]).order_by(Trade.close_date).all() curdayprofit = sum( trade.close_profit_abs for trade in trades if trade.close_profit_abs is not None) profit_days[profitday] = { 'amount': curdayprofit, 'trades': len(trades) } data = [ { 'date': key, 'abs_profit': value["amount"], 'fiat_value': self._fiat_converter.convert_amount( value['amount'], stake_currency, fiat_display_currency ) if self._fiat_converter else 0, 'trade_count': value["trades"], } for key, value in profit_days.items() ] return { 'stake_currency': stake_currency, 'fiat_display_currency': fiat_display_currency, 'data': data } def _rpc_trade_history(self, limit: int, offset: int = 0, order_by_id: bool = False) -> Dict: """ Returns the X last trades """ order_by = Trade.id if order_by_id else Trade.close_date.desc() if limit: trades = Trade.get_trades([Trade.is_open.is_(False)]).order_by( order_by).limit(limit).offset(offset) else: trades = Trade.get_trades([Trade.is_open.is_(False)]).order_by( Trade.close_date.desc()).all() output = [trade.to_json() for trade in trades] return { "trades": output, "trades_count": len(output), "total_trades": Trade.get_trades([Trade.is_open.is_(False)]).count(), } def _rpc_stats(self) -> Dict[str, Any]: """ Generate generic stats for trades in database """ def trade_win_loss(trade): if trade.close_profit > 0: return 'wins' elif trade.close_profit < 0: return 'losses' else: return 'draws' trades = trades = Trade.get_trades([Trade.is_open.is_(False)]) # Sell reason sell_reasons = {} for trade in trades: if trade.sell_reason not in sell_reasons: sell_reasons[trade.sell_reason] = {'wins': 0, 'losses': 0, 'draws': 0} sell_reasons[trade.sell_reason][trade_win_loss(trade)] += 1 # Duration dur: Dict[str, List[int]] = {'wins': [], 'draws': [], 'losses': []} for trade in trades: if trade.close_date is not None and trade.open_date is not None: trade_dur = (trade.close_date - trade.open_date).total_seconds() dur[trade_win_loss(trade)].append(trade_dur) wins_dur = sum(dur['wins']) / len(dur['wins']) if len(dur['wins']) > 0 else 'N/A' draws_dur = sum(dur['draws']) / len(dur['draws']) if len(dur['draws']) > 0 else 'N/A' losses_dur = sum(dur['losses']) / len(dur['losses']) if len(dur['losses']) > 0 else 'N/A' durations = {'wins': wins_dur, 'draws': draws_dur, 'losses': losses_dur} return {'sell_reasons': sell_reasons, 'durations': durations} def _rpc_trade_statistics( self, stake_currency: str, fiat_display_currency: str) -> Dict[str, Any]: """ Returns cumulative profit statistics """ trades = Trade.get_trades().order_by(Trade.id).all() profit_all_coin = [] profit_all_ratio = [] profit_closed_coin = [] profit_closed_ratio = [] durations = [] winning_trades = 0 losing_trades = 0 for trade in trades: current_rate: float = 0.0 if not trade.open_rate: continue if trade.close_date: durations.append((trade.close_date - trade.open_date).total_seconds()) if not trade.is_open: profit_ratio = trade.close_profit profit_closed_coin.append(trade.close_profit_abs) profit_closed_ratio.append(profit_ratio) if trade.close_profit >= 0: winning_trades += 1 else: losing_trades += 1 else: # Get current rate try: current_rate = self._freqtrade.get_sell_rate(trade.pair, False) except (PricingError, ExchangeError): current_rate = NAN profit_ratio = trade.calc_profit_ratio(rate=current_rate) profit_all_coin.append( trade.calc_profit(rate=trade.close_rate or current_rate) ) profit_all_ratio.append(profit_ratio) best_pair = Trade.get_best_pair() # Prepare data to display profit_closed_coin_sum = round(sum(profit_closed_coin), 8) profit_closed_ratio_mean = float(mean(profit_closed_ratio) if profit_closed_ratio else 0.0) profit_closed_ratio_sum = sum(profit_closed_ratio) if profit_closed_ratio else 0.0 profit_closed_fiat = self._fiat_converter.convert_amount( profit_closed_coin_sum, stake_currency, fiat_display_currency ) if self._fiat_converter else 0 profit_all_coin_sum = round(sum(profit_all_coin), 8) profit_all_ratio_mean = float(mean(profit_all_ratio) if profit_all_ratio else 0.0) profit_all_ratio_sum = sum(profit_all_ratio) if profit_all_ratio else 0.0 profit_all_fiat = self._fiat_converter.convert_amount( profit_all_coin_sum, stake_currency, fiat_display_currency ) if self._fiat_converter else 0 first_date = trades[0].open_date if trades else None last_date = trades[-1].open_date if trades else None num = float(len(durations) or 1) return { 'profit_closed_coin': profit_closed_coin_sum, 'profit_closed_percent_mean': round(profit_closed_ratio_mean * 100, 2), 'profit_closed_ratio_mean': profit_closed_ratio_mean, 'profit_closed_percent_sum': round(profit_closed_ratio_sum * 100, 2), 'profit_closed_ratio_sum': profit_closed_ratio_sum, 'profit_closed_fiat': profit_closed_fiat, 'profit_all_coin': profit_all_coin_sum, 'profit_all_percent_mean': round(profit_all_ratio_mean * 100, 2), 'profit_all_ratio_mean': profit_all_ratio_mean, 'profit_all_percent_sum': round(profit_all_ratio_sum * 100, 2), 'profit_all_ratio_sum': profit_all_ratio_sum, 'profit_all_fiat': profit_all_fiat, 'trade_count': len(trades), 'closed_trade_count': len([t for t in trades if not t.is_open]), 'first_trade_date': arrow.get(first_date).humanize() if first_date else '', 'first_trade_timestamp': int(first_date.timestamp() * 1000) if first_date else 0, 'latest_trade_date': arrow.get(last_date).humanize() if last_date else '', 'latest_trade_timestamp': int(last_date.timestamp() * 1000) if last_date else 0, 'avg_duration': str(timedelta(seconds=sum(durations) / num)).split('.')[0], 'best_pair': best_pair[0] if best_pair else '', 'best_rate': round(best_pair[1] * 100, 2) if best_pair else 0, 'winning_trades': winning_trades, 'losing_trades': losing_trades, } def _rpc_balance(self, stake_currency: str, fiat_display_currency: str) -> Dict: """ Returns current account balance per crypto """ output = [] total = 0.0 try: tickers = self._freqtrade.exchange.get_tickers(cached=True) except (ExchangeError): raise RPCException('Error getting current tickers.') self._freqtrade.wallets.update(require_update=False) for coin, balance in self._freqtrade.wallets.get_all_balances().items(): if not balance.total: continue est_stake: float = 0 if coin == stake_currency: rate = 1.0 est_stake = balance.total else: try: pair = self._freqtrade.exchange.get_valid_pair_combination(coin, stake_currency) rate = tickers.get(pair, {}).get('bid', None) if rate: if pair.startswith(stake_currency) and not pair.endswith(stake_currency): rate = 1.0 / rate est_stake = rate * balance.total except (ExchangeError): logger.warning(f" Could not get rate for pair {coin}.") continue total = total + (est_stake or 0) output.append({ 'currency': coin, 'free': balance.free if balance.free is not None else 0, 'balance': balance.total if balance.total is not None else 0, 'used': balance.used if balance.used is not None else 0, 'est_stake': est_stake or 0, 'stake': stake_currency, }) if total == 0.0: if self._freqtrade.config['dry_run']: raise RPCException('Running in Dry Run, balances are not available.') else: raise RPCException('All balances are zero.') symbol = fiat_display_currency value = self._fiat_converter.convert_amount(total, stake_currency, symbol) if self._fiat_converter else 0 return { 'currencies': output, 'total': total, 'symbol': symbol, 'value': value, 'stake': stake_currency, 'note': 'Simulated balances' if self._freqtrade.config['dry_run'] else '' } def _rpc_start(self) -> Dict[str, str]: """ Handler for start """ if self._freqtrade.state == State.RUNNING: return {'status': 'already running'} self._freqtrade.state = State.RUNNING return {'status': 'starting trader ...'} def _rpc_stop(self) -> Dict[str, str]: """ Handler for stop """ if self._freqtrade.state == State.RUNNING: self._freqtrade.state = State.STOPPED return {'status': 'stopping trader ...'} return {'status': 'already stopped'} def _rpc_reload_config(self) -> Dict[str, str]: """ Handler for reload_config. """ self._freqtrade.state = State.RELOAD_CONFIG return {'status': 'Reloading config ...'} def _rpc_stopbuy(self) -> Dict[str, str]: """ Handler to stop buying, but handle open trades gracefully. """ if self._freqtrade.state == State.RUNNING: # Set 'max_open_trades' to 0 self._freqtrade.config['max_open_trades'] = 0 return {'status': 'No more buy will occur from now. Run /reload_config to reset.'} def _rpc_forcesell(self, trade_id: str) -> Dict[str, str]: """ Handler for forcesell . Sells the given trade at current price """ def _exec_forcesell(trade: Trade) -> None: # Check if there is there is an open order fully_canceled = False if trade.open_order_id: order = self._freqtrade.exchange.fetch_order(trade.open_order_id, trade.pair) if order['side'] == 'buy': fully_canceled = self._freqtrade.handle_cancel_buy( trade, order, CANCEL_REASON['FORCE_SELL']) if order['side'] == 'sell': # Cancel order - so it is placed anew with a fresh price. self._freqtrade.handle_cancel_sell(trade, order, CANCEL_REASON['FORCE_SELL']) if not fully_canceled: # Get current rate and execute sell current_rate = self._freqtrade.get_sell_rate(trade.pair, False) sell_reason = SellCheckTuple(sell_type=SellType.FORCE_SELL) self._freqtrade.execute_sell(trade, current_rate, sell_reason) # ---- EOF def _exec_forcesell ---- if self._freqtrade.state != State.RUNNING: raise RPCException('trader is not running') with self._freqtrade._sell_lock: if trade_id == 'all': # Execute sell for all open orders for trade in Trade.get_open_trades(): _exec_forcesell(trade) Trade.query.session.flush() self._freqtrade.wallets.update() return {'result': 'Created sell orders for all open trades.'} # Query for trade trade = Trade.get_trades( trade_filter=[Trade.id == trade_id, Trade.is_open.is_(True), ] ).first() if not trade: logger.warning('forcesell: Invalid argument received') raise RPCException('invalid argument') _exec_forcesell(trade) Trade.query.session.flush() self._freqtrade.wallets.update() return {'result': f'Created sell order for trade {trade_id}.'} def _rpc_forcebuy(self, pair: str, price: Optional[float]) -> Optional[Trade]: """ Handler for forcebuy Buys a pair trade at the given or current price """ if not self._freqtrade.config.get('forcebuy_enable', False): raise RPCException('Forcebuy not enabled.') if self._freqtrade.state != State.RUNNING: raise RPCException('trader is not running') # Check if pair quote currency equals to the stake currency. stake_currency = self._freqtrade.config.get('stake_currency') if not self._freqtrade.exchange.get_pair_quote_currency(pair) == stake_currency: raise RPCException( f'Wrong pair selected. Only pairs with stake-currency {stake_currency} allowed.') # check if valid pair # check if pair already has an open pair trade = Trade.get_trades([Trade.is_open.is_(True), Trade.pair == pair]).first() if trade: raise RPCException(f'position for {pair} already open - id: {trade.id}') # gen stake amount stakeamount = self._freqtrade.wallets.get_trade_stake_amount(pair) # execute buy if self._freqtrade.execute_buy(pair, stakeamount, price, forcebuy=True): trade = Trade.get_trades([Trade.is_open.is_(True), Trade.pair == pair]).first() return trade else: return None def _rpc_delete(self, trade_id: int) -> Dict[str, Union[str, int]]: """ Handler for delete . Delete the given trade and close eventually existing open orders. """ with self._freqtrade._sell_lock: c_count = 0 trade = Trade.get_trades(trade_filter=[Trade.id == trade_id]).first() if not trade: logger.warning('delete trade: Invalid argument received') raise RPCException('invalid argument') # Try cancelling regular order if that exists if trade.open_order_id: try: self._freqtrade.exchange.cancel_order(trade.open_order_id, trade.pair) c_count += 1 except (ExchangeError): pass # cancel stoploss on exchange ... if (self._freqtrade.strategy.order_types.get('stoploss_on_exchange') and trade.stoploss_order_id): try: self._freqtrade.exchange.cancel_stoploss_order(trade.stoploss_order_id, trade.pair) c_count += 1 except (ExchangeError): pass trade.delete() self._freqtrade.wallets.update() return { 'result': 'success', 'trade_id': trade_id, 'result_msg': f'Deleted trade {trade_id}. Closed {c_count} open orders.', 'cancel_order_count': c_count, } def _rpc_performance(self) -> List[Dict[str, Any]]: """ Handler for performance. Shows a performance statistic from finished trades """ pair_rates = Trade.get_overall_performance() # Round and convert to % [x.update({'profit': round(x['profit'] * 100, 2)}) for x in pair_rates] return pair_rates def _rpc_count(self) -> Dict[str, float]: """ Returns the number of trades running """ if self._freqtrade.state != State.RUNNING: raise RPCException('trader is not running') trades = Trade.get_open_trades() return { 'current': len(trades), 'max': (int(self._freqtrade.config['max_open_trades']) if self._freqtrade.config['max_open_trades'] != float('inf') else -1), 'total_stake': sum((trade.open_rate * trade.amount) for trade in trades) } def _rpc_locks(self) -> Dict[str, Any]: """ Returns the current locks """ locks = PairLocks.get_pair_locks(None) return { 'lock_count': len(locks), 'locks': [lock.to_json() for lock in locks] } def _rpc_delete_lock(self, lockid: Optional[int] = None, pair: Optional[str] = None) -> Dict[str, Any]: """ Delete specific lock(s) """ locks = [] if pair: locks = PairLocks.get_pair_locks(pair) if lockid: locks = PairLock.query.filter(PairLock.id == lockid).all() for lock in locks: lock.active = False lock.lock_end_time = datetime.now(timezone.utc) # session is always the same PairLock.query.session.flush() return self._rpc_locks() def _rpc_whitelist(self) -> Dict: """ Returns the currently active whitelist""" res = {'method': self._freqtrade.pairlists.name_list, 'length': len(self._freqtrade.active_pair_whitelist), 'whitelist': self._freqtrade.active_pair_whitelist } return res def _rpc_blacklist(self, add: List[str] = None) -> Dict: """ Returns the currently active blacklist""" errors = {} if add: for pair in add: if pair not in self._freqtrade.pairlists.blacklist: try: expand_pairlist([pair], self._freqtrade.exchange.get_markets().keys()) self._freqtrade.pairlists.blacklist.append(pair) except ValueError: errors[pair] = { 'error_msg': f'Pair {pair} is not a valid wildcard.'} else: errors[pair] = { 'error_msg': f'Pair {pair} already in pairlist.'} res = {'method': self._freqtrade.pairlists.name_list, 'length': len(self._freqtrade.pairlists.blacklist), 'blacklist': self._freqtrade.pairlists.blacklist, 'blacklist_expanded': self._freqtrade.pairlists.expanded_blacklist, 'errors': errors, } return res @staticmethod def _rpc_get_logs(limit: Optional[int]) -> Dict[str, Any]: """Returns the last X logs""" if limit: buffer = bufferHandler.buffer[-limit:] else: buffer = bufferHandler.buffer records = [[datetime.fromtimestamp(r.created).strftime(DATETIME_PRINT_FORMAT), r.created * 1000, r.name, r.levelname, r.message + ('\n' + r.exc_text if r.exc_text else '')] for r in buffer] # Log format: # [logtime-formatted, logepoch, logger-name, loglevel, message \n + exception] # e.g. ["2020-08-27 11:35:01", 1598520901097.9397, # "freqtrade.worker", "INFO", "Starting worker develop"] return {'log_count': len(records), 'logs': records} def _rpc_edge(self) -> List[Dict[str, Any]]: """ Returns information related to Edge """ if not self._freqtrade.edge: raise RPCException('Edge is not enabled.') return self._freqtrade.edge.accepted_pairs() @staticmethod def _convert_dataframe_to_dict(strategy: str, pair: str, timeframe: str, dataframe: DataFrame, last_analyzed: datetime) -> Dict[str, Any]: has_content = len(dataframe) != 0 buy_signals = 0 sell_signals = 0 if has_content: dataframe.loc[:, '__date_ts'] = dataframe.loc[:, 'date'].astype(int64) // 1000 // 1000 # Move open to seperate column when signal for easy plotting if 'buy' in dataframe.columns: buy_mask = (dataframe['buy'] == 1) buy_signals = int(buy_mask.sum()) dataframe.loc[buy_mask, '_buy_signal_open'] = dataframe.loc[buy_mask, 'open'] if 'sell' in dataframe.columns: sell_mask = (dataframe['sell'] == 1) sell_signals = int(sell_mask.sum()) dataframe.loc[sell_mask, '_sell_signal_open'] = dataframe.loc[sell_mask, 'open'] dataframe = dataframe.replace([inf, -inf], NAN) dataframe = dataframe.replace({NAN: None}) res = { 'pair': pair, 'timeframe': timeframe, 'timeframe_ms': timeframe_to_msecs(timeframe), 'strategy': strategy, 'columns': list(dataframe.columns), 'data': dataframe.values.tolist(), 'length': len(dataframe), 'buy_signals': buy_signals, 'sell_signals': sell_signals, 'last_analyzed': last_analyzed, 'last_analyzed_ts': int(last_analyzed.timestamp()), 'data_start': '', 'data_start_ts': 0, 'data_stop': '', 'data_stop_ts': 0, } if has_content: res.update({ 'data_start': str(dataframe.iloc[0]['date']), 'data_start_ts': int(dataframe.iloc[0]['__date_ts']), 'data_stop': str(dataframe.iloc[-1]['date']), 'data_stop_ts': int(dataframe.iloc[-1]['__date_ts']), }) return res def _rpc_analysed_dataframe(self, pair: str, timeframe: str, limit: Optional[int]) -> Dict[str, Any]: _data, last_analyzed = self._freqtrade.dataprovider.get_analyzed_dataframe( pair, timeframe) _data = _data.copy() if limit: _data = _data.iloc[-limit:] return self._convert_dataframe_to_dict(self._freqtrade.config['strategy'], pair, timeframe, _data, last_analyzed) @staticmethod def _rpc_analysed_history_full(config, pair: str, timeframe: str, timerange: str) -> Dict[str, Any]: timerange_parsed = TimeRange.parse_timerange(timerange) _data = load_data( datadir=config.get("datadir"), pairs=[pair], timeframe=timeframe, timerange=timerange_parsed, data_format=config.get('dataformat_ohlcv', 'json'), ) if pair not in _data: raise RPCException(f"No data for {pair}, {timeframe} in {timerange} found.") from freqtrade.resolvers.strategy_resolver import StrategyResolver strategy = StrategyResolver.load_strategy(config) df_analyzed = strategy.analyze_ticker(_data[pair], {'pair': pair}) return RPC._convert_dataframe_to_dict(strategy.get_strategy_name(), pair, timeframe, df_analyzed, arrow.Arrow.utcnow().datetime) def _rpc_plot_config(self) -> Dict[str, Any]: if (self._freqtrade.strategy.plot_config and 'subplots' not in self._freqtrade.strategy.plot_config): self._freqtrade.strategy.plot_config['subplots'] = {} return self._freqtrade.strategy.plot_config