import logging from typing import Any, Dict, Tuple from pandas import DataFrame from freqtrade.exceptions import OperationalException from freqtrade.freqai.data_kitchen import FreqaiDataKitchen import tensorflow as tf from freqtrade.freqai.base_models.BaseTensorFlowModel import BaseTensorFlowModel, WindowGenerator from tensorflow.keras.layers import Input, Conv1D, Dense from tensorflow.keras.models import Model import numpy as np logger = logging.getLogger(__name__) # tf.config.run_functions_eagerly(True) # tf.data.experimental.enable_debug_mode() MAX_EPOCHS = 10 class CNNPredictionModel(BaseTensorFlowModel): """ User created prediction model. The class needs to override three necessary functions, predict(), fit(). """ def fit(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen) -> Any: """ User sets up the training and test data to fit their desired model here :params: :data_dictionary: the dictionary constructed by DataHandler to hold all the training and test data/labels. """ train_df = data_dictionary["train_features"] train_labels = data_dictionary["train_labels"] test_df = data_dictionary["test_features"] test_labels = data_dictionary["test_labels"] n_labels = len(train_labels.columns) if n_labels > 1: raise OperationalException( "Neural Net not yet configured for multi-targets. Please " " reduce number of targets to 1 in strategy." ) n_features = len(data_dictionary["train_features"].columns) BATCH_SIZE = self.freqai_info.get("batch_size", 64) input_dims = [BATCH_SIZE, self.CONV_WIDTH, n_features] w1 = WindowGenerator( input_width=self.CONV_WIDTH, label_width=1, shift=1, train_df=train_df, val_df=test_df, train_labels=train_labels, val_labels=test_labels, batch_size=BATCH_SIZE, ) model = self.create_model(input_dims, n_labels) steps_per_epoch = np.ceil(len(test_df) / BATCH_SIZE) lr_schedule = tf.keras.optimizers.schedules.InverseTimeDecay( 0.001, decay_steps=steps_per_epoch * 1000, decay_rate=1, staircase=False ) early_stopping = tf.keras.callbacks.EarlyStopping( monitor="loss", patience=3, mode="min", min_delta=0.0001 ) model.compile( loss=tf.losses.MeanSquaredError(), optimizer=tf.optimizers.Adam(lr_schedule), metrics=[tf.metrics.MeanAbsoluteError()], ) model.fit( w1.train, epochs=MAX_EPOCHS, shuffle=False, validation_data=w1.val, callbacks=[early_stopping], verbose=1, ) return model def predict( self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first=True ) -> Tuple[DataFrame, DataFrame]: """ Filter the prediction features data and predict with it. :param: unfiltered_dataframe: Full dataframe for the current backtest period. :return: :predictions: np.array of predictions :do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove data (NaNs) or felt uncertain about data (PCA and DI index) """ dk.find_features(unfiltered_dataframe) filtered_dataframe, _ = dk.filter_features( unfiltered_dataframe, dk.training_features_list, training_filter=False ) filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe) dk.data_dictionary["prediction_features"] = filtered_dataframe # optional additional data cleaning/analysis self.data_cleaning_predict(dk, filtered_dataframe) if first: full_df = dk.data_dictionary["prediction_features"] w1 = WindowGenerator( input_width=self.CONV_WIDTH, label_width=1, shift=1, test_df=full_df, batch_size=len(full_df), ) predictions = self.model.predict(w1.inference) len_diff = len(dk.do_predict) - len(predictions) if len_diff > 0: dk.do_predict = dk.do_predict[len_diff:] else: data = dk.data_dictionary["prediction_features"] data = tf.expand_dims(data, axis=0) predictions = self.model(data, training=False) predictions = predictions[:, 0, 0] pred_df = DataFrame(predictions, columns=dk.label_list) pred_df = dk.denormalize_labels_from_metadata(pred_df) return (pred_df, np.ones(len(pred_df))) def create_model(self, input_dims, n_labels) -> Any: input_layer = Input(shape=(input_dims[1], input_dims[2])) Layer_1 = Conv1D(filters=32, kernel_size=(self.CONV_WIDTH,), activation="relu")(input_layer) Layer_3 = Dense(units=32, activation="relu")(Layer_1) output_layer = Dense(units=n_labels)(Layer_3) return Model(inputs=input_layer, outputs=output_layer)