# pragma pylint: disable=too-many-instance-attributes, pointless-string-statement """ This module contains the hyperopt logic """ import logging import multiprocessing import os import sys from argparse import Namespace from math import exp from operator import itemgetter from typing import Any, Dict, List from pandas import DataFrame from joblib import Parallel, delayed, dump, load, wrap_non_picklable_objects from skopt import Optimizer from skopt.space import Dimension from freqtrade.arguments import Arguments from freqtrade.configuration import Configuration from freqtrade.optimize import load_data, get_timeframe from freqtrade.optimize.backtesting import Backtesting from freqtrade.optimize.hyperopt_resolver import HyperOptResolver logger = logging.getLogger(__name__) MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization TICKERDATA_PICKLE = os.path.join('user_data', 'hyperopt_tickerdata.pkl') class Hyperopt(Backtesting): """ Hyperopt class, this class contains all the logic to run a hyperopt simulation To run a backtest: hyperopt = Hyperopt(config) hyperopt.start() """ def __init__(self, config: Dict[str, Any]) -> None: super().__init__(config) self.config = config self.custom_hyperopt = HyperOptResolver(self.config).hyperopt # set TARGET_TRADES to suit your number concurrent trades so its realistic # to the number of days self.target_trades = 600 self.total_tries = config.get('epochs', 0) self.current_best_loss = 100 # max average trade duration in minutes # if eval ends with higher value, we consider it a failed eval self.max_accepted_trade_duration = 300 # this is expexted avg profit * expected trade count # for example 3.5%, 1100 trades, self.expected_max_profit = 3.85 # check that the reported Σ% values do not exceed this! self.expected_max_profit = 3.0 # Previous evaluations self.trials_file = os.path.join('user_data', 'hyperopt_results.pickle') self.trials: List = [] def get_args(self, params): dimensions = self.hyperopt_space() # Ensure the number of dimensions match # the number of parameters in the list x. if len(params) != len(dimensions): raise ValueError('Mismatch in number of search-space dimensions. ' f'len(dimensions)=={len(dimensions)} and len(x)=={len(params)}') # Create a dict where the keys are the names of the dimensions # and the values are taken from the list of parameters x. arg_dict = {dim.name: value for dim, value in zip(dimensions, params)} return arg_dict def save_trials(self) -> None: """ Save hyperopt trials to file """ if self.trials: logger.info('Saving %d evaluations to \'%s\'', len(self.trials), self.trials_file) dump(self.trials, self.trials_file) def read_trials(self) -> List: """ Read hyperopt trials file """ logger.info('Reading Trials from \'%s\'', self.trials_file) trials = load(self.trials_file) os.remove(self.trials_file) return trials def log_trials_result(self) -> None: """ Display Best hyperopt result """ results = sorted(self.trials, key=itemgetter('loss')) best_result = results[0] logger.info( 'Best result:\n%s\nwith values:\n%s', best_result['result'], best_result['params'] ) if 'roi_t1' in best_result['params']: logger.info('ROI table:\n%s', self.custom_hyperopt.generate_roi_table(best_result['params'])) def log_results(self, results) -> None: """ Log results if it is better than any previous evaluation """ if results['loss'] < self.current_best_loss: current = results['current_tries'] total = results['total_tries'] res = results['result'] loss = results['loss'] self.current_best_loss = results['loss'] log_msg = f'\n{current:5d}/{total}: {res}. Loss {loss:.5f}' print(log_msg) else: print('.', end='') sys.stdout.flush() def calculate_loss(self, total_profit: float, trade_count: int, trade_duration: float) -> float: """ Objective function, returns smaller number for more optimal results """ trade_loss = 1 - 0.25 * exp(-(trade_count - self.target_trades) ** 2 / 10 ** 5.8) profit_loss = max(0, 1 - total_profit / self.expected_max_profit) duration_loss = 0.4 * min(trade_duration / self.max_accepted_trade_duration, 1) result = trade_loss + profit_loss + duration_loss return result def has_space(self, space: str) -> bool: """ Tell if a space value is contained in the configuration """ if space in self.config['spaces'] or 'all' in self.config['spaces']: return True return False def hyperopt_space(self) -> List[Dimension]: """ Return the space to use during Hyperopt """ spaces: List[Dimension] = [] if self.has_space('buy'): spaces += self.custom_hyperopt.indicator_space() if self.has_space('roi'): spaces += self.custom_hyperopt.roi_space() if self.has_space('stoploss'): spaces += self.custom_hyperopt.stoploss_space() return spaces def generate_optimizer(self, _params: Dict) -> Dict: params = self.get_args(_params) if self.has_space('roi'): self.strategy.minimal_roi = self.custom_hyperopt.generate_roi_table(params) if self.has_space('buy'): self.advise_buy = self.custom_hyperopt.buy_strategy_generator(params) if self.has_space('stoploss'): self.strategy.stoploss = params['stoploss'] processed = load(TICKERDATA_PICKLE) min_date, max_date = get_timeframe(processed) results = self.backtest( { 'stake_amount': self.config['stake_amount'], 'processed': processed, 'position_stacking': self.config.get('position_stacking', True), 'start_date': min_date, 'end_date': max_date, } ) result_explanation = self.format_results(results) total_profit = results.profit_percent.sum() trade_count = len(results.index) trade_duration = results.trade_duration.mean() if trade_count == 0: return { 'loss': MAX_LOSS, 'params': params, 'result': result_explanation, } loss = self.calculate_loss(total_profit, trade_count, trade_duration) return { 'loss': loss, 'params': params, 'result': result_explanation, } def format_results(self, results: DataFrame) -> str: """ Return the format result in a string """ trades = len(results.index) avg_profit = results.profit_percent.mean() * 100.0 total_profit = results.profit_abs.sum() stake_cur = self.config['stake_currency'] profit = results.profit_percent.sum() duration = results.trade_duration.mean() return (f'{trades:6d} trades. Avg profit {avg_profit: 5.2f}%. ' f'Total profit {total_profit: 11.8f} {stake_cur} ' f'({profit:.4f}Σ%). Avg duration {duration:5.1f} mins.') def get_optimizer(self, cpu_count) -> Optimizer: return Optimizer( self.hyperopt_space(), base_estimator="ET", acq_optimizer="auto", n_initial_points=30, acq_optimizer_kwargs={'n_jobs': cpu_count} ) def run_optimizer_parallel(self, parallel, asked) -> List: return parallel(delayed( wrap_non_picklable_objects(self.generate_optimizer))(v) for v in asked) def load_previous_results(self): """ read trials file if we have one """ if os.path.exists(self.trials_file) and os.path.getsize(self.trials_file) > 0: self.trials = self.read_trials() logger.info( 'Loaded %d previous evaluations from disk.', len(self.trials) ) def start(self) -> None: timerange = Arguments.parse_timerange(None if self.config.get( 'timerange') is None else str(self.config.get('timerange'))) data = load_data( datadir=str(self.config.get('datadir')), pairs=self.config['exchange']['pair_whitelist'], ticker_interval=self.ticker_interval, timerange=timerange ) if self.has_space('buy'): self.strategy.advise_indicators = \ self.custom_hyperopt.populate_indicators # type: ignore dump(self.strategy.tickerdata_to_dataframe(data), TICKERDATA_PICKLE) self.exchange = None # type: ignore self.load_previous_results() cpus = multiprocessing.cpu_count() logger.info(f'Found {cpus} CPU cores. Let\'s make them scream!') opt = self.get_optimizer(cpus) EVALS = max(self.total_tries // cpus, 1) try: with Parallel(n_jobs=cpus) as parallel: for i in range(EVALS): asked = opt.ask(n_points=cpus) f_val = self.run_optimizer_parallel(parallel, asked) opt.tell(asked, [i['loss'] for i in f_val]) self.trials += f_val for j in range(cpus): self.log_results({ 'loss': f_val[j]['loss'], 'current_tries': i * cpus + j, 'total_tries': self.total_tries, 'result': f_val[j]['result'], }) except KeyboardInterrupt: print('User interrupted..') self.save_trials() self.log_trials_result() def start(args: Namespace) -> None: """ Start Backtesting script :param args: Cli args from Arguments() :return: None """ # Remove noisy log messages logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING) # Initialize configuration # Monkey patch the configuration with hyperopt_conf.py configuration = Configuration(args) logger.info('Starting freqtrade in Hyperopt mode') config = configuration.load_config() config['exchange']['key'] = '' config['exchange']['secret'] = '' if config.get('strategy') and config.get('strategy') != 'DefaultStrategy': logger.error("Please don't use --strategy for hyperopt.") logger.error( "Read the documentation at " "https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md " "to understand how to configure hyperopt.") raise ValueError("--strategy configured but not supported for hyperopt") # Initialize backtesting object hyperopt = Hyperopt(config) hyperopt.start()