# pragma pylint: disable=too-many-instance-attributes, pointless-string-statement """ This module contains the hyperopt logic """ import functools import logging import multiprocessing import os import sys from argparse import Namespace from math import exp from operator import itemgetter from pathlib import Path from pprint import pprint from typing import Any, Dict, List from joblib import Parallel, delayed, dump, load, wrap_non_picklable_objects from joblib._parallel_backends import LokyBackend from joblib import register_parallel_backend, parallel_backend from pandas import DataFrame from skopt import Optimizer from skopt.space import Dimension from freqtrade.arguments import Arguments from freqtrade.configuration import Configuration from freqtrade.data.history import load_data from freqtrade.optimize import get_timeframe from freqtrade.optimize.backtesting import Backtesting from freqtrade.state import RunMode from freqtrade.resolvers import HyperOptResolver logger = logging.getLogger(__name__) MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization TICKERDATA_PICKLE = os.path.join('user_data', 'hyperopt_tickerdata.pkl') EVALS_FRAME = 100 _hyperopt = None class Hyperopt(Backtesting): """ Hyperopt class, this class contains all the logic to run a hyperopt simulation To run a backtest: hyperopt = Hyperopt(config) hyperopt.start() """ def __init__(self, config: Dict[str, Any]) -> None: super().__init__(config) self.config = config self.custom_hyperopt = HyperOptResolver(self.config).hyperopt # set TARGET_TRADES to suit your number concurrent trades so its realistic # to the number of days self.target_trades = 600 self.total_tries = config.get('epochs', 0) self.current_best_loss = 100 # max average trade duration in minutes # if eval ends with higher value, we consider it a failed eval self.max_accepted_trade_duration = 300 # this is expexted avg profit * expected trade count # for example 3.5%, 1100 trades, self.expected_max_profit = 3.85 # check that the reported Σ% values do not exceed this! self.expected_max_profit = 3.0 # Previous evaluations self.trials_file = os.path.join('user_data', 'hyperopt_results.pickle') self.trials: List = [] self.opt = None self.f_val: List = [] def get_args(self, params): dimensions = self.hyperopt_space() # Ensure the number of dimensions match # the number of parameters in the list x. if len(params) != len(dimensions): raise ValueError('Mismatch in number of search-space dimensions. ' f'len(dimensions)=={len(dimensions)} and len(x)=={len(params)}') # Create a dict where the keys are the names of the dimensions # and the values are taken from the list of parameters x. arg_dict = {dim.name: value for dim, value in zip(dimensions, params)} return arg_dict def save_trials(self) -> None: """ Save hyperopt trials to file """ if self.trials: logger.info('Saving %d evaluations to \'%s\'', len(self.trials), self.trials_file) dump(self.trials, self.trials_file) def read_trials(self) -> List: """ Read hyperopt trials file """ logger.info('Reading Trials from \'%s\'', self.trials_file) trials = load(self.trials_file) os.remove(self.trials_file) return trials def log_trials_result(self) -> None: """ Display Best hyperopt result """ results = sorted(self.trials, key=itemgetter('loss')) best_result = results[0] logger.info( 'Best result:\n%s\nwith values:\n', best_result['result'] ) pprint(best_result['params'], indent=4) if 'roi_t1' in best_result['params']: logger.info('ROI table:') pprint(self.custom_hyperopt.generate_roi_table(best_result['params']), indent=4) def log_results_immediate(self, n) -> None: print('.', end='') sys.stdout.flush() def log_results(self, f_val, frame_start, total_tries) -> None: """ Log results if it is better than any previous evaluation """ for i, v in enumerate(f_val): if v['loss'] < self.current_best_loss: current = frame_start + i + 1 res = v['result'] loss = v['loss'] self.current_best_loss = v['loss'] log_msg = f'\n{current:5d}/{total_tries}: {res}. Loss {loss:.5f}' print(log_msg) def calculate_loss(self, total_profit: float, trade_count: int, trade_duration: float) -> float: """ Objective function, returns smaller number for more optimal results """ trade_loss = 1 - 0.25 * exp(-(trade_count - self.target_trades) ** 2 / 10 ** 5.8) profit_loss = max(0, 1 - total_profit / self.expected_max_profit) duration_loss = 0.4 * min(trade_duration / self.max_accepted_trade_duration, 1) result = trade_loss + profit_loss + duration_loss return result def has_space(self, space: str) -> bool: """ Tell if a space value is contained in the configuration """ if space in self.config['spaces'] or 'all' in self.config['spaces']: return True return False def hyperopt_space(self) -> List[Dimension]: """ Return the space to use during Hyperopt """ spaces: List[Dimension] = [] if self.has_space('buy'): spaces += self.custom_hyperopt.indicator_space() if self.has_space('sell'): spaces += self.custom_hyperopt.sell_indicator_space() # Make sure experimental is enabled if 'experimental' not in self.config: self.config['experimental'] = {} self.config['experimental']['use_sell_signal'] = True if self.has_space('roi'): spaces += self.custom_hyperopt.roi_space() if self.has_space('stoploss'): spaces += self.custom_hyperopt.stoploss_space() return spaces def generate_optimizer(self, _params: Dict) -> Dict: """ Process params (a point in the hyper options space generated by the optimizer.ask() optimizer method) and run backtest() for it. This method is executed in one of the joblib worker processes. The optimizer.tell() function is executed in the joblib parent process in order to tell results to single instance of the optimizer rather than its copies serialized in the joblib worker processes. It receives result of this method as a part of the joblib batch completion callback function. """ params = self.get_args(_params) if self.has_space('roi'): self.strategy.minimal_roi = self.custom_hyperopt.generate_roi_table(params) if self.has_space('buy'): self.advise_buy = self.custom_hyperopt.buy_strategy_generator(params) elif hasattr(self.custom_hyperopt, 'populate_buy_trend'): self.advise_buy = self.custom_hyperopt.populate_buy_trend # type: ignore if self.has_space('sell'): self.advise_sell = self.custom_hyperopt.sell_strategy_generator(params) elif hasattr(self.custom_hyperopt, 'populate_sell_trend'): self.advise_sell = self.custom_hyperopt.populate_sell_trend # type: ignore if self.has_space('stoploss'): self.strategy.stoploss = params['stoploss'] processed = load(TICKERDATA_PICKLE) min_date, max_date = get_timeframe(processed) results = self.backtest( { 'stake_amount': self.config['stake_amount'], 'processed': processed, 'position_stacking': self.config.get('position_stacking', True), 'start_date': min_date, 'end_date': max_date, } ) result_explanation = self.format_results(results) total_profit = results.profit_percent.sum() trade_count = len(results.index) trade_duration = results.trade_duration.mean() loss = MAX_LOSS if trade_count == 0 else \ self.calculate_loss(total_profit, trade_count, trade_duration) return { 'loss': loss, 'params': params, 'result': result_explanation, 'asked': _params, } def format_results(self, results: DataFrame) -> str: """ Return the format result in a string """ trades = len(results.index) avg_profit = results.profit_percent.mean() * 100.0 total_profit = results.profit_abs.sum() stake_cur = self.config['stake_currency'] profit = results.profit_percent.sum() duration = results.trade_duration.mean() return (f'{trades:6d} trades. Avg profit {avg_profit: 5.2f}%. ' f'Total profit {total_profit: 11.8f} {stake_cur} ' f'({profit:.4f}Σ%). Avg duration {duration:5.1f} mins.') def get_optimizer(self, cpu_count) -> Optimizer: return Optimizer( self.hyperopt_space(), base_estimator="ET", acq_optimizer="auto", n_initial_points=30, acq_optimizer_kwargs={'n_jobs': cpu_count}, ) def run_optimizer_parallel(self, parallel, tries: int, first_try: int) -> List: result = parallel(delayed( wrap_non_picklable_objects(self.parallel_objective)) (asked, i) for asked, i in zip(self.opt_generator(), range(first_try, first_try + tries))) return result def opt_generator(self): while True: if self.f_val: # print("opt.tell(): ", # [v['asked'] for v in self.f_val], [v['loss'] for v in self.f_val]) functools.partial( self.opt.tell, ([v['asked'] for v in self.f_val], [v['loss'] for v in self.f_val]) ) self.f_val = [] yield self.opt.ask() def parallel_objective(self, asked, n): self.log_results_immediate(n) return self.generate_optimizer(asked) def parallel_callback(self, f_val): self.f_val.extend(f_val) def load_previous_results(self): """ read trials file if we have one """ if os.path.exists(self.trials_file) and os.path.getsize(self.trials_file) > 0: self.trials = self.read_trials() logger.info( 'Loaded %d previous evaluations from disk.', len(self.trials) ) def start(self) -> None: timerange = Arguments.parse_timerange(None if self.config.get( 'timerange') is None else str(self.config.get('timerange'))) data = load_data( datadir=Path(self.config['datadir']) if self.config.get('datadir') else None, pairs=self.config['exchange']['pair_whitelist'], ticker_interval=self.ticker_interval, timerange=timerange ) if self.has_space('buy') or self.has_space('sell'): self.strategy.advise_indicators = \ self.custom_hyperopt.populate_indicators # type: ignore dump(self.strategy.tickerdata_to_dataframe(data), TICKERDATA_PICKLE) self.exchange = None # type: ignore self.load_previous_results() cpus = multiprocessing.cpu_count() logger.info(f'Found {cpus} CPU cores. Let\'s make them scream!') self.opt = self.get_optimizer(cpus) frames = ((self.total_tries - 1) // EVALS_FRAME) last_frame_len = (self.total_tries - 1) % EVALS_FRAME try: register_parallel_backend('custom', CustomImmediateResultBackend) with parallel_backend('custom'): with Parallel(n_jobs=cpus, verbose=0) as parallel: for frame in range(frames + 1): frame_start = frame * EVALS_FRAME frame_len = last_frame_len+1 if frame == frames else EVALS_FRAME print(f"\n{frame_start+1}-{frame_start+frame_len}" f"/{self.total_tries}: ", end='') f_val = self.run_optimizer_parallel( parallel, frame_len, frame_start ) self.trials += f_val self.log_results(f_val, frame_start, self.total_tries) except KeyboardInterrupt: print("User interrupted..") print("\n") self.save_trials() self.log_trials_result() def start(args: Namespace) -> None: """ Start Backtesting script :param args: Cli args from Arguments() :return: None """ # Remove noisy log messages logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING) # Initialize configuration # Monkey patch the configuration with hyperopt_conf.py configuration = Configuration(args, RunMode.HYPEROPT) logger.info('Starting freqtrade in Hyperopt mode') config = configuration.load_config() config['exchange']['key'] = '' config['exchange']['secret'] = '' if config.get('strategy') and config.get('strategy') != 'DefaultStrategy': logger.error("Please don't use --strategy for hyperopt.") logger.error( "Read the documentation at " "https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md " "to understand how to configure hyperopt.") raise ValueError("--strategy configured but not supported for hyperopt") # Initialize backtesting object global _hyperopt _hyperopt = Hyperopt(config) _hyperopt.start() class MultiCallback: def __init__(self, *callbacks): self.callbacks = [cb for cb in callbacks if cb] def __call__(self, out): for cb in self.callbacks: cb(out) class CustomImmediateResultBackend(LokyBackend): def callback(self, result): """ Our custom completion callback. Executed in the parent process. Use it to run Optimizer.tell() with immediate results of the backtest() evaluated in the joblib worker process. """ # Fetch results from the Future object passed to us. # Future object is assumed to be 'done' already. f_val = result.result().copy() _hyperopt.parallel_callback(f_val) def apply_async(self, func, callback=None): cbs = MultiCallback(callback, self.callback) return super().apply_async(func, cbs)