@article{scikit-learn,
 title={Scikit-learn: Machine Learning in {P}ython},
 author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
         and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
         and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
         Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
 journal={Journal of Machine Learning Research},
 volume={12},
 pages={2825--2830},
 year={2011}
}

@inproceedings{catboost,
author = {Prokhorenkova, Liudmila and Gusev, Gleb and Vorobev, Aleksandr and Dorogush, Anna Veronika and Gulin, Andrey},
title = {CatBoost: Unbiased Boosting with Categorical Features},
year = {2018},
publisher = {Curran Associates Inc.},
address = {Red Hook, NY, USA},
abstract = {This paper presents the key algorithmic techniques behind CatBoost, a new gradient boosting toolkit. Their combination leads to CatBoost outperforming other publicly available boosting implementations in terms of quality on a variety of datasets. Two critical algorithmic advances introduced in CatBoost are the implementation of ordered boosting, a permutation-driven alternative to the classic algorithm, and an innovative algorithm for processing categorical features. Both techniques were created to fight a prediction shift caused by a special kind of target leakage present in all currently existing implementations of gradient boosting algorithms. In this paper, we provide a detailed analysis of this problem and demonstrate that proposed algorithms solve it effectively, leading to excellent empirical results.},
booktitle = {Proceedings of the 32nd International Conference on Neural Information Processing Systems},
pages = {6639–6649},
numpages = {11},
location = {Montr\'{e}al, Canada},
series = {NIPS'18}
}


@article{lightgbm,
  title={Lightgbm: A highly efficient gradient boosting decision tree},
  author={Ke, Guolin and Meng, Qi and Finley, Thomas and Wang, Taifeng and Chen, Wei and Ma, Weidong and Ye, Qiwei and Liu, Tie-Yan},
  journal={Advances in neural information processing systems},
  volume={30},
  pages={3146--3154},
  year={2017}
} 

@inproceedings{xgboost,
 author = {Chen, Tianqi and Guestrin, Carlos},
 title = {{XGBoost}: A Scalable Tree Boosting System},
 booktitle = {Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},
 series = {KDD '16},
 year = {2016},
 isbn = {978-1-4503-4232-2},
 location = {San Francisco, California, USA},
 pages = {785--794},
 numpages = {10},
 url = {http://doi.acm.org/10.1145/2939672.2939785},
 doi = {10.1145/2939672.2939785},
 acmid = {2939785},
 publisher = {ACM},
 address = {New York, NY, USA},
 keywords = {large-scale machine learning},
}

@article{stable-baselines3,
  author  = {Antonin Raffin and Ashley Hill and Adam Gleave and Anssi Kanervisto and Maximilian Ernestus and Noah Dormann},
  title   = {Stable-Baselines3: Reliable Reinforcement Learning Implementations},
  journal = {Journal of Machine Learning Research},
  year    = {2021},
  volume  = {22},
  number  = {268},
  pages   = {1-8},
  url     = {http://jmlr.org/papers/v22/20-1364.html}
}

@misc{openai,
      title={OpenAI Gym}, 
      author={Greg Brockman and Vicki Cheung and Ludwig Pettersson and Jonas Schneider and John Schulman and Jie Tang and Wojciech Zaremba},
      year={2016},
      eprint={1606.01540},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

@misc{tensorflow,
title={ {TensorFlow}: Large-Scale Machine Learning on Heterogeneous Systems},
url={https://www.tensorflow.org/},
note={Software available from tensorflow.org},
author={
    Mart\'{i}n~Abadi and
    Ashish~Agarwal and
    Paul~Barham and
    Eugene~Brevdo and
    Zhifeng~Chen and
    Craig~Citro and
    Greg~S.~Corrado and
    Andy~Davis and
    Jeffrey~Dean and
    Matthieu~Devin and
    Sanjay~Ghemawat and
    Ian~Goodfellow and
    Andrew~Harp and
    Geoffrey~Irving and
    Michael~Isard and
    Yangqing Jia and
    Rafal~Jozefowicz and
    Lukasz~Kaiser and
    Manjunath~Kudlur and
    Josh~Levenberg and
    Dandelion~Man\'{e} and
    Rajat~Monga and
    Sherry~Moore and
    Derek~Murray and
    Chris~Olah and
    Mike~Schuster and
    Jonathon~Shlens and
    Benoit~Steiner and
    Ilya~Sutskever and
    Kunal~Talwar and
    Paul~Tucker and
    Vincent~Vanhoucke and
    Vijay~Vasudevan and
    Fernanda~Vi\'{e}gas and
    Oriol~Vinyals and
    Pete~Warden and
    Martin~Wattenberg and
    Martin~Wicke and
    Yuan~Yu and
    Xiaoqiang~Zheng},
  year={2015},
}

@incollection{pytorch,
title = {PyTorch: An Imperative Style, High-Performance Deep Learning Library},
author = {Paszke, Adam and Gross, Sam and Massa, Francisco and Lerer, Adam and Bradbury, James and Chanan, Gregory and Killeen, Trevor and Lin, Zeming and Gimelshein, Natalia and Antiga, Luca and Desmaison, Alban and Kopf, Andreas and Yang, Edward and DeVito, Zachary and Raison, Martin and Tejani, Alykhan and Chilamkurthy, Sasank and Steiner, Benoit and Fang, Lu and Bai, Junjie and Chintala, Soumith},
booktitle = {Advances in Neural Information Processing Systems 32},
editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett},
pages = {8024--8035},
year = {2019},
publisher = {Curran Associates, Inc.},
url = {http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf}
}

@ARTICLE{scipy,
  author  = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
            Haberland, Matt and Reddy, Tyler and Cournapeau, David and
            Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
            Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
            Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
            Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
            Kern, Robert and Larson, Eric and Carey, C J and
            Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
            {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
            Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
            Harris, Charles R. and Archibald, Anne M. and
            Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
            {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
  title   = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
            Computing in Python}},
  journal = {Nature Methods},
  year    = {2020},
  volume  = {17},
  pages   = {261--272},
  adsurl  = {https://rdcu.be/b08Wh},
  doi     = {10.1038/s41592-019-0686-2},
}

@Article{numpy,
 title         = {Array programming with {NumPy}},
 author        = {Charles R. Harris and K. Jarrod Millman and St{\'{e}}fan J.
                 van der Walt and Ralf Gommers and Pauli Virtanen and David
                 Cournapeau and Eric Wieser and Julian Taylor and Sebastian
                 Berg and Nathaniel J. Smith and Robert Kern and Matti Picus
                 and Stephan Hoyer and Marten H. van Kerkwijk and Matthew
                 Brett and Allan Haldane and Jaime Fern{\'{a}}ndez del
                 R{\'{i}}o and Mark Wiebe and Pearu Peterson and Pierre
                 G{\'{e}}rard-Marchant and Kevin Sheppard and Tyler Reddy and
                 Warren Weckesser and Hameer Abbasi and Christoph Gohlke and
                 Travis E. Oliphant},
 year          = {2020},
 month         = sep,
 journal       = {Nature},
 volume        = {585},
 number        = {7825},
 pages         = {357--362},
 doi           = {10.1038/s41586-020-2649-2},
 publisher     = {Springer Science and Business Media {LLC}},
 url           = {https://doi.org/10.1038/s41586-020-2649-2}
}

 @inproceedings{pandas,
  title={Data structures for statistical computing in python},
  author={McKinney, Wes and others},
  booktitle={Proceedings of the 9th Python in Science Conference},
  volume={445},
  pages={51--56},
  year={2010},
  organization={Austin, TX},
  doi={10.25080/Majora-92bf1922-00a}
}



@online{finrl,
  title = {AI4Finance-Foundation},
  year = 2022,
  url = {https://github.com/AI4Finance-Foundation/FinRL},
  urldate = {2022-09-30}
}


@online{tensortrade,
  title = {tensortrade},
  year = 2022,
  url = {https://tensortradex.readthedocs.io/en/latest/L},
  urldate = {2022-09-30}
}