import gc import logging from abc import ABC, abstractmethod from pathlib import Path from typing import Any, Dict, Tuple import numpy as np import pandas as pd from pandas import DataFrame from freqtrade.freqai.data_handler import DataHandler pd.options.mode.chained_assignment = None logger = logging.getLogger(__name__) class IFreqaiModel(ABC): """ Class containing all tools for training and prediction in the strategy. User models should inherit from this class as shown in templates/ExamplePredictionModel.py where the user overrides train(), predict(), fit(), and make_labels(). Author: Robert Caulk, rob.caulk@gmail.com """ def __init__(self, config: Dict[str, Any]) -> None: self.config = config self.freqai_info = config["freqai"] self.data_split_parameters = config["freqai"]["data_split_parameters"] self.model_training_parameters = config["freqai"]["model_training_parameters"] self.feature_parameters = config["freqai"]["feature_parameters"] self.backtest_timerange = config["timerange"] self.time_last_trained = None self.current_time = None self.model = None self.predictions = None def start(self, dataframe: DataFrame, metadata: dict) -> DataFrame: """ Entry point to the FreqaiModel, it will train a new model if necesssary before making the prediction. The backtesting and training paradigm is a sliding training window with a following backtest window. Both windows slide according to the length of the backtest window. This function is not intended to be overridden by children of IFreqaiModel, but technically, it can be if the user wishes to make deeper changes to the sliding window logic. :params: :dataframe: Full dataframe coming from strategy - it contains entire backtesting timerange + additional historical data necessary to train the model. :metadata: pair metadataa coming from strategy. """ self.pair = metadata["pair"] self.dh = DataHandler(self.config, dataframe) logger.info("going to train %s timeranges", len(self.dh.training_timeranges)) # Loop enforcing the sliding window training/backtesting paragigm # tr_train is the training time range e.g. 1 historical month # tr_backtest is the backtesting time range e.g. the week directly # following tr_train. Both of these windows slide through the # entire backtest for tr_train, tr_backtest in zip( self.dh.training_timeranges, self.dh.backtesting_timeranges ): gc.collect() # self.config['timerange'] = tr_train self.dh.data = {} # clean the pair specific data between models self.training_timerange = tr_train dataframe_train = self.dh.slice_dataframe(tr_train, dataframe) dataframe_backtest = self.dh.slice_dataframe(tr_backtest, dataframe) logger.info("training %s for %s", self.pair, tr_train) self.dh.model_path = Path(self.dh.full_path / str("sub-train" + "-" + str(tr_train))) if not self.model_exists(self.pair, training_timerange=tr_train): self.model = self.train(dataframe_train, metadata) self.dh.save_data(self.model) else: self.model = self.dh.load_data() preds, do_preds = self.predict(dataframe_backtest) self.dh.append_predictions(preds, do_preds, len(dataframe_backtest)) self.dh.fill_predictions(len(dataframe)) return self.dh.predictions, self.dh.do_predict, self.dh.target_mean, self.dh.target_std def make_labels(self, dataframe: DataFrame) -> DataFrame: """ User defines the labels here (target values). :params: :dataframe: the full dataframe for the present training period """ return dataframe @abstractmethod def train(self, unfiltered_dataframe: DataFrame, metadata: dict) -> Any: """ Filter the training data and train a model to it. Train makes heavy use of the datahandler for storing, saving, loading, and analyzing the data. :params: :unfiltered_dataframe: Full dataframe for the current training period :metadata: pair metadata from strategy. :returns: :model: Trained model which can be used to inference (self.predict) """ return Any @abstractmethod def fit(self) -> Any: """ Most regressors use the same function names and arguments e.g. user can drop in LGBMRegressor in place of CatBoostRegressor and all data management will be properly handled by Freqai. :params: :data_dictionary: the dictionary constructed by DataHandler to hold all the training and test data/labels. """ return Any @abstractmethod def predict(self, dataframe: DataFrame) -> Tuple[np.array, np.array]: """ Filter the prediction features data and predict with it. :param: unfiltered_dataframe: Full dataframe for the current backtest period. :return: :predictions: np.array of predictions :do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove data (NaNs) or felt uncertain about data (PCA and DI index) """ return np.array([]), np.array([]) def model_exists(self, pair: str, training_timerange: str) -> bool: """ Given a pair and path, check if a model already exists :param pair: pair e.g. BTC/USD :param path: path to model """ coin, _ = pair.split("/") self.dh.model_filename = "cb_" + coin.lower() + "_" + training_timerange path_to_modelfile = Path(self.dh.model_path / str(self.dh.model_filename + "_model.joblib")) file_exists = path_to_modelfile.is_file() if file_exists: logger.info("Found model at %s", self.dh.model_path / self.dh.model_filename) else: logger.info("Could not find model at %s", self.dh.model_path / self.dh.model_filename) return file_exists