import shutil from datetime import datetime, timedelta, timezone from pathlib import Path from unittest.mock import MagicMock import pytest from freqtrade.configuration import TimeRange from freqtrade.data.dataprovider import DataProvider from freqtrade.exceptions import OperationalException from freqtrade.freqai.data_kitchen import FreqaiDataKitchen from freqtrade.freqai.utils import get_timerange_backtest_live_models from tests.conftest import get_patched_exchange, log_has_re from tests.freqai.conftest import (get_patched_data_kitchen, get_patched_freqai_strategy, make_data_dictionary, make_unfiltered_dataframe) @pytest.mark.parametrize( "timerange, train_period_days, expected_result", [ ("20220101-20220201", 30, "20211202-20220201"), ("20220301-20220401", 15, "20220214-20220401"), ], ) def test_create_fulltimerange( timerange, train_period_days, expected_result, freqai_conf, mocker, caplog ): dk = get_patched_data_kitchen(mocker, freqai_conf) assert dk.create_fulltimerange(timerange, train_period_days) == expected_result shutil.rmtree(Path(dk.full_path)) def test_create_fulltimerange_incorrect_backtest_period(mocker, freqai_conf): dk = get_patched_data_kitchen(mocker, freqai_conf) with pytest.raises(OperationalException, match=r"backtest_period_days must be an integer"): dk.create_fulltimerange("20220101-20220201", 0.5) with pytest.raises(OperationalException, match=r"backtest_period_days must be positive"): dk.create_fulltimerange("20220101-20220201", -1) shutil.rmtree(Path(dk.full_path)) @pytest.mark.parametrize( "timerange, train_period_days, backtest_period_days, expected_result", [ ("20220101-20220201", 30, 7, 9), ("20220101-20220201", 30, 0.5, 120), ("20220101-20220201", 10, 1, 80), ], ) def test_split_timerange( mocker, freqai_conf, timerange, train_period_days, backtest_period_days, expected_result ): freqai_conf.update({"timerange": "20220101-20220401"}) dk = get_patched_data_kitchen(mocker, freqai_conf) tr_list, bt_list = dk.split_timerange(timerange, train_period_days, backtest_period_days) assert len(tr_list) == len(bt_list) == expected_result with pytest.raises( OperationalException, match=r"train_period_days must be an integer greater than 0." ): dk.split_timerange("20220101-20220201", -1, 0.5) shutil.rmtree(Path(dk.full_path)) def test_check_if_model_expired(mocker, freqai_conf): dk = get_patched_data_kitchen(mocker, freqai_conf) now = datetime.now(tz=timezone.utc).timestamp() assert dk.check_if_model_expired(now) is False now = (datetime.now(tz=timezone.utc) - timedelta(hours=2)).timestamp() assert dk.check_if_model_expired(now) is True shutil.rmtree(Path(dk.full_path)) def test_use_DBSCAN_to_remove_outliers(mocker, freqai_conf, caplog): freqai = make_data_dictionary(mocker, freqai_conf) # freqai_conf['freqai']['feature_parameters'].update({"outlier_protection_percentage": 1}) freqai.dk.use_DBSCAN_to_remove_outliers(predict=False) assert log_has_re(r"DBSCAN found eps of 1\.7\d\.", caplog) def test_compute_distances(mocker, freqai_conf): freqai = make_data_dictionary(mocker, freqai_conf) freqai_conf['freqai']['feature_parameters'].update({"DI_threshold": 1}) avg_mean_dist = freqai.dk.compute_distances() assert round(avg_mean_dist, 2) == 1.99 def test_use_SVM_to_remove_outliers_and_outlier_protection(mocker, freqai_conf, caplog): freqai = make_data_dictionary(mocker, freqai_conf) freqai_conf['freqai']['feature_parameters'].update({"outlier_protection_percentage": 0.1}) freqai.dk.use_SVM_to_remove_outliers(predict=False) assert log_has_re( "SVM detected 7.36%", caplog, ) def test_compute_inlier_metric(mocker, freqai_conf, caplog): freqai = make_data_dictionary(mocker, freqai_conf) freqai_conf['freqai']['feature_parameters'].update({"inlier_metric_window": 10}) freqai.dk.compute_inlier_metric(set_='train') assert log_has_re( "Inlier metric computed and added to features.", caplog, ) def test_add_noise_to_training_features(mocker, freqai_conf): freqai = make_data_dictionary(mocker, freqai_conf) freqai_conf['freqai']['feature_parameters'].update({"noise_standard_deviation": 0.1}) freqai.dk.add_noise_to_training_features() def test_remove_beginning_points_from_data_dict(mocker, freqai_conf): freqai = make_data_dictionary(mocker, freqai_conf) freqai.dk.remove_beginning_points_from_data_dict(set_='train') def test_principal_component_analysis(mocker, freqai_conf, caplog): freqai = make_data_dictionary(mocker, freqai_conf) freqai.dk.principal_component_analysis() assert log_has_re( "reduced feature dimension by", caplog, ) def test_normalize_data(mocker, freqai_conf): freqai = make_data_dictionary(mocker, freqai_conf) data_dict = freqai.dk.data_dictionary freqai.dk.normalize_data(data_dict) assert len(freqai.dk.data) == 32 def test_filter_features(mocker, freqai_conf): freqai, unfiltered_dataframe = make_unfiltered_dataframe(mocker, freqai_conf) freqai.dk.find_features(unfiltered_dataframe) filtered_df, labels = freqai.dk.filter_features( unfiltered_dataframe, freqai.dk.training_features_list, freqai.dk.label_list, training_filter=True, ) assert len(filtered_df.columns) == 14 def test_make_train_test_datasets(mocker, freqai_conf): freqai, unfiltered_dataframe = make_unfiltered_dataframe(mocker, freqai_conf) freqai.dk.find_features(unfiltered_dataframe) features_filtered, labels_filtered = freqai.dk.filter_features( unfiltered_dataframe, freqai.dk.training_features_list, freqai.dk.label_list, training_filter=True, ) data_dictionary = freqai.dk.make_train_test_datasets(features_filtered, labels_filtered) assert data_dictionary assert len(data_dictionary) == 7 assert len(data_dictionary['train_features'].index) == 1916 def test_get_pairs_timestamp_validation(mocker, freqai_conf): exchange = get_patched_exchange(mocker, freqai_conf) strategy = get_patched_freqai_strategy(mocker, freqai_conf) strategy.dp = DataProvider(freqai_conf, exchange) strategy.freqai_info = freqai_conf.get("freqai", {}) freqai = strategy.freqai freqai.live = True freqai.dk = FreqaiDataKitchen(freqai_conf) freqai_conf['freqai'].update({"identifier": "invalid_id"}) model_path = freqai.dk.get_full_models_path(freqai_conf) with pytest.raises( OperationalException, match=r'.*required to run backtest with the freqai-backtest-live-models.*' ): freqai.dk.get_assets_timestamps_training_from_ready_models(model_path) @pytest.mark.parametrize('model', [ 'LightGBMRegressor' ]) def test_get_timerange_from_ready_models(mocker, freqai_conf, model): freqai_conf.update({"freqaimodel": model}) freqai_conf.update({"timerange": "20180110-20180130"}) freqai_conf.update({"strategy": "freqai_test_strat"}) strategy = get_patched_freqai_strategy(mocker, freqai_conf) exchange = get_patched_exchange(mocker, freqai_conf) strategy.dp = DataProvider(freqai_conf, exchange) strategy.freqai_info = freqai_conf.get("freqai", {}) freqai = strategy.freqai freqai.live = True freqai.dk = FreqaiDataKitchen(freqai_conf) timerange = TimeRange.parse_timerange("20180101-20180130") freqai.dd.load_all_pair_histories(timerange, freqai.dk) freqai.dd.pair_dict = MagicMock() data_load_timerange = TimeRange.parse_timerange("20180101-20180130") # 1516233600 (2018-01-18 00:00) - Start Training 1 # 1516406400 (2018-01-20 00:00) - End Training 1 (Backtest slice 1) # 1516579200 (2018-01-22 00:00) - End Training 2 (Backtest slice 2) # 1516838400 (2018-01-25 00:00) - End Timerange new_timerange = TimeRange("date", "date", 1516233600, 1516406400) freqai.extract_data_and_train_model( new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange) new_timerange = TimeRange("date", "date", 1516406400, 1516579200) freqai.extract_data_and_train_model( new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange) model_path = freqai.dk.get_full_models_path(freqai_conf) (backtesting_timerange, pairs_end_dates) = freqai.dk.get_timerange_and_assets_end_dates_from_ready_models( models_path=model_path) assert len(pairs_end_dates["ADA"]) == 2 assert backtesting_timerange.startts == 1516406400 assert backtesting_timerange.stopts == 1516838400 backtesting_string_timerange = get_timerange_backtest_live_models(freqai_conf) assert backtesting_string_timerange == '20180120-20180125' @pytest.mark.parametrize('model', [ 'LightGBMRegressor' ]) def test_get_full_model_path(mocker, freqai_conf, model): freqai_conf.update({"freqaimodel": model}) freqai_conf.update({"timerange": "20180110-20180130"}) freqai_conf.update({"strategy": "freqai_test_strat"}) strategy = get_patched_freqai_strategy(mocker, freqai_conf) exchange = get_patched_exchange(mocker, freqai_conf) strategy.dp = DataProvider(freqai_conf, exchange) strategy.freqai_info = freqai_conf.get("freqai", {}) freqai = strategy.freqai freqai.live = True freqai.dk = FreqaiDataKitchen(freqai_conf) timerange = TimeRange.parse_timerange("20180110-20180130") freqai.dd.load_all_pair_histories(timerange, freqai.dk) freqai.dd.pair_dict = MagicMock() data_load_timerange = TimeRange.parse_timerange("20180110-20180130") new_timerange = TimeRange.parse_timerange("20180120-20180130") freqai.extract_data_and_train_model( new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange) model_path = freqai.dk.get_full_models_path(freqai_conf) assert model_path.is_dir() is True