""" CalmarHyperOptLossDaily This module defines the alternative HyperOptLoss class which can be used for Hyperoptimization. """ from datetime import datetime from math import sqrt as msqrt from typing import Any, Dict from pandas import DataFrame, date_range from freqtrade.optimize.hyperopt import IHyperOptLoss class CalmarHyperOptLossDaily(IHyperOptLoss): """ Defines the loss function for hyperopt. This implementation uses the Calmar Ratio calculation. """ @staticmethod def hyperopt_loss_function( results: DataFrame, trade_count: int, min_date: datetime, max_date: datetime, config: Dict, processed: Dict[str, DataFrame], backtest_stats: Dict[str, Any], *args, **kwargs ) -> float: """ Objective function, returns smaller number for more optimal results. Uses Calmar Ratio calculation. """ resample_freq = "1D" slippage_per_trade_ratio = 0.0005 days_in_year = 365 # create the index within the min_date and end max_date t_index = date_range( start=min_date, end=max_date, freq=resample_freq, normalize=True ) # apply slippage per trade to profit_total results.loc[:, "profit_ratio_after_slippage"] = ( results["profit_ratio"] - slippage_per_trade_ratio ) sum_daily = ( results.resample(resample_freq, on="close_date") .agg({"profit_ratio_after_slippage": sum}) .reindex(t_index) .fillna(0) ) total_profit = sum_daily["profit_ratio_after_slippage"] expected_returns_mean = total_profit.mean() * 100 # calculate max drawdown try: high_val = total_profit.max() low_val = total_profit.min() max_drawdown = (high_val - low_val) / high_val except (ValueError, ZeroDivisionError): max_drawdown = 0 if max_drawdown != 0: calmar_ratio = expected_returns_mean / max_drawdown * msqrt(days_in_year) else: # Define high (negative) calmar ratio to be clear that this is NOT optimal. calmar_ratio = -20.0 # print(t_index, sum_daily, total_profit) # print(expected_returns_mean, max_drawdown, calmar_ratio) return -calmar_ratio