# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from pandas import DataFrame
# --------------------------------

# Add your lib to import here
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
import numpy  # noqa


# This class is a sample. Feel free to customize it.
class TestStrategyLegacy(IStrategy):
    """
    This is a test strategy using the legacy function headers, which will be
    removed in a future update.
    Please do not use this as a template, but refer to user_data/strategy/TestStrategy.py
    for a uptodate version of this template.

    """

    # Minimal ROI designed for the strategy.
    # This attribute will be overridden if the config file contains "minimal_roi"
    minimal_roi = {
        "40": 0.0,
        "30": 0.01,
        "20": 0.02,
        "0": 0.04
    }

    # Optimal stoploss designed for the strategy
    # This attribute will be overridden if the config file contains "stoploss"
    stoploss = -0.10

    # Optimal ticker interval for the strategy
    ticker_interval = '5m'

    def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        """

        # Momentum Indicator
        # ------------------------------------

        # ADX
        dataframe['adx'] = ta.ADX(dataframe)

        """
        # Awesome oscillator
        dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)

        # Commodity Channel Index: values Oversold:<-100, Overbought:>100
        dataframe['cci'] = ta.CCI(dataframe)

        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        # MFI
        dataframe['mfi'] = ta.MFI(dataframe)

        # Minus Directional Indicator / Movement
        dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)

        # Plus Directional Indicator / Movement
        dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
        dataframe['plus_di'] = ta.PLUS_DI(dataframe)
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)

        # ROC
        dataframe['roc'] = ta.ROC(dataframe)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        rsi = 0.1 * (dataframe['rsi'] - 50)
        dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)

        # Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
        dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)

        # Stoch
        stoch = ta.STOCH(dataframe)
        dataframe['slowd'] = stoch['slowd']
        dataframe['slowk'] = stoch['slowk']

        # Stoch fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']

        # Stoch RSI
        stoch_rsi = ta.STOCHRSI(dataframe)
        dataframe['fastd_rsi'] = stoch_rsi['fastd']
        dataframe['fastk_rsi'] = stoch_rsi['fastk']
        """

        # Overlap Studies
        # ------------------------------------

        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']

        """
        # EMA - Exponential Moving Average
        dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
        dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
        dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
        dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
        dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)

        # SAR Parabol
        dataframe['sar'] = ta.SAR(dataframe)

        # SMA - Simple Moving Average
        dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
        """

        # TEMA - Triple Exponential Moving Average
        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)

        # Cycle Indicator
        # ------------------------------------
        # Hilbert Transform Indicator - SineWave
        hilbert = ta.HT_SINE(dataframe)
        dataframe['htsine'] = hilbert['sine']
        dataframe['htleadsine'] = hilbert['leadsine']

        # Pattern Recognition - Bullish candlestick patterns
        # ------------------------------------
        """
        # Hammer: values [0, 100]
        dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
        # Inverted Hammer: values [0, 100]
        dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
        # Dragonfly Doji: values [0, 100]
        dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
        # Piercing Line: values [0, 100]
        dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
        # Morningstar: values [0, 100]
        dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
        # Three White Soldiers: values [0, 100]
        dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
        """

        # Pattern Recognition - Bearish candlestick patterns
        # ------------------------------------
        """
        # Hanging Man: values [0, 100]
        dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
        # Shooting Star: values [0, 100]
        dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
        # Gravestone Doji: values [0, 100]
        dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
        # Dark Cloud Cover: values [0, 100]
        dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
        # Evening Doji Star: values [0, 100]
        dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
        # Evening Star: values [0, 100]
        dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
        """

        # Pattern Recognition - Bullish/Bearish candlestick patterns
        # ------------------------------------
        """
        # Three Line Strike: values [0, -100, 100]
        dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
        # Spinning Top: values [0, -100, 100]
        dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
        # Engulfing: values [0, -100, 100]
        dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
        # Harami: values [0, -100, 100]
        dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
        # Three Outside Up/Down: values [0, -100, 100]
        dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
        # Three Inside Up/Down: values [0, -100, 100]
        dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
        """

        # Chart type
        # ------------------------------------
        """
        # Heikinashi stategy
        heikinashi = qtpylib.heikinashi(dataframe)
        dataframe['ha_open'] = heikinashi['open']
        dataframe['ha_close'] = heikinashi['close']
        dataframe['ha_high'] = heikinashi['high']
        dataframe['ha_low'] = heikinashi['low']
        """

        return dataframe

    def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
        """
        Based on TA indicators, populates the buy signal for the given dataframe
        :param dataframe: DataFrame
        :return: DataFrame with buy column
        """
        dataframe.loc[
            (
                (dataframe['adx'] > 30) &
                (dataframe['tema'] <= dataframe['bb_middleband']) &
                (dataframe['tema'] > dataframe['tema'].shift(1))
            ),
            'buy'] = 1

        return dataframe

    def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
        """
        Based on TA indicators, populates the sell signal for the given dataframe
        :param dataframe: DataFrame
        :return: DataFrame with buy column
        """
        dataframe.loc[
            (
                (dataframe['adx'] > 70) &
                (dataframe['tema'] > dataframe['bb_middleband']) &
                (dataframe['tema'] < dataframe['tema'].shift(1))
            ),
            'sell'] = 1
        return dataframe