#!/usr/bin/env python3 """ Script to display when the bot will buy a specific pair Mandatory Cli parameters: -p / --pair: pair to examine Optional Cli parameters -d / --datadir: path to pair backtest data --timerange: specify what timerange of data to use. -l / --live: Live, to download the latest ticker for the pair """ import logging import sys from argparse import Namespace from os import path import glob import json import re from typing import List, Dict import gzip from freqtrade.arguments import Arguments from freqtrade import misc, constants from pandas import DataFrame import dateutil.parser logger = logging.getLogger('freqtrade') def load_old_file(filename) -> (List[Dict], bool): if not path.isfile(filename): logger.warning("filename %s does not exist", filename) return (None, False) logger.debug('Loading ticker data from file %s', filename) pairdata = None if filename.endswith('.gz'): logger.debug('Loading ticker data from file %s', filename) is_zip = True with gzip.open(filename) as tickerdata: pairdata = json.load(tickerdata) else: is_zip = False with open(filename) as tickerdata: pairdata = json.load(tickerdata) return (pairdata, is_zip) def parse_old_backtest_data(ticker) -> DataFrame: """ Reads old backtest data Format: "O": 8.794e-05, "H": 8.948e-05, "L": 8.794e-05, "C": 8.88e-05, "V": 991.09056638, "T": "2017-11-26T08:50:00", "BV": 0.0877869 """ columns = {'C': 'close', 'V': 'volume', 'O': 'open', 'H': 'high', 'L': 'low', 'T': 'date'} frame = DataFrame(ticker) \ .rename(columns=columns) if 'BV' in frame: frame.drop('BV', 1, inplace=True) if 'date' not in frame: logger.warning("Date not in frame - probably not a Ticker file") return None frame.sort_values('date', inplace=True) return frame def convert_dataframe(frame: DataFrame): """Convert dataframe to new format""" # reorder columns: cols = ['date', 'open', 'high', 'low', 'close', 'volume'] frame = frame[cols] # Make sure parsing/printing data is assumed to be UTC frame['date'] = frame['date'].apply( lambda d: int(dateutil.parser.parse(d+'+00:00').timestamp()) * 1000) frame['date'] = frame['date'].astype('int64') # Convert columns one by one to preserve type. by_column = [frame[x].values.tolist() for x in frame.columns] return list(list(x) for x in zip(*by_column)) def convert_file(filename: str, filename_new: str) -> None: """Converts a file from old format to ccxt format""" (pairdata, is_zip) = load_old_file(filename) if pairdata and type(pairdata) is list: if type(pairdata[0]) is list: logger.error("pairdata for %s already in new format", filename) return frame = parse_old_backtest_data(pairdata) # Convert frame to new format if frame is not None: frame1 = convert_dataframe(frame) misc.file_dump_json(filename_new, frame1, is_zip) def convert_main(args: Namespace) -> None: """ converts a folder given in --datadir from old to new format to support ccxt """ workdir = path.join(args.datadir, "") logger.info("Workdir: %s", workdir) for filename in glob.glob(workdir + "*.json"): # swap currency names ret = re.search(r'[A-Z_]{7,}', path.basename(filename)) if args.norename: filename_new = filename else: if not ret: logger.warning("file %s could not be converted, could not extract currencies", filename) continue pair = ret.group(0) currencies = pair.split("_") if len(currencies) != 2: logger.warning("file %s could not be converted, could not extract currencies", filename) continue ret_integer = re.search(r'\d+(?=\.json)', path.basename(filename)) ret_string = re.search(r'(\d+[mhdw])(?=\.json)', path.basename(filename)) if ret_integer: minutes = int(ret_integer.group(0)) # default to adding 'm' to end of minutes for new interval name interval = str(minutes) + 'm' # but check if there is a mapping between int and string also for str_interval, minutes_interval in constants.TICKER_INTERVAL_MINUTES.items(): if minutes_interval == minutes: interval = str_interval break # change order on pairs if old ticker interval found filename_new = path.join(path.dirname(filename), f"{currencies[1]}_{currencies[0]}-{interval}.json") elif ret_string: interval = ret_string.group(0) filename_new = path.join(path.dirname(filename), f"{currencies[0]}_{currencies[1]}-{interval}.json") else: logger.warning("file %s could not be converted, interval not found", filename) continue logger.debug("Converting and renaming %s to %s", filename, filename_new) convert_file(filename, filename_new) def convert_parse_args(args: List[str]) -> Namespace: """ Parse args passed to the script :param args: Cli arguments :return: args: Array with all arguments """ arguments = Arguments(args, 'Convert datafiles') arguments.parser.add_argument( '-d', '--datadir', help='path to backtest data (default: %(default)s', dest='datadir', default=path.join('freqtrade', 'tests', 'testdata'), type=str, metavar='PATH', ) arguments.parser.add_argument( '-n', '--norename', help='don''t rename files from BTC_<PAIR> to <PAIR>_BTC - ' 'Note that not renaming will overwrite source files', dest='norename', default=False, action='store_true' ) return arguments.parse_args() def main(sysargv: List[str]) -> None: """ This function will initiate the bot and start the trading loop. :return: None """ logger.info('Starting Dataframe conversation') convert_main(convert_parse_args(sysargv)) if __name__ == '__main__': main(sys.argv[1:])