from abc import ABC, abstractmethod from typing import List, Optional import pandas as pd import torch class PyTorchDataConvertor(ABC): """ This class is responsible for converting `*_features` & `*_labels` pandas dataframes to pytorch tensors. """ @abstractmethod def convert_x(self, df: pd.DataFrame, device: Optional[str] = None) -> List[torch.Tensor]: """ :param df: "*_features" dataframe. :param device: The device to use for training (e.g. 'cpu', 'cuda'). """ @abstractmethod def convert_y(self, df: pd.DataFrame, device: Optional[str] = None) -> List[torch.Tensor]: """ :param df: "*_labels" dataframe. :param device: The device to use for training (e.g. 'cpu', 'cuda'). """ class DefaultPyTorchDataConvertor(PyTorchDataConvertor): """ A default conversion that keeps features dataframe shapes. """ def __init__( self, target_tensor_type: Optional[torch.dtype] = None, squeeze_target_tensor: bool = False ): """ :param target_tensor_type: type of target tensor, for classification use torch.long, for regressor use torch.float or torch.double. :param squeeze_target_tensor: controls the target shape, used for loss functions that requires 0D or 1D. """ self._target_tensor_type = target_tensor_type self._squeeze_target_tensor = squeeze_target_tensor def convert_x(self, df: pd.DataFrame, device: Optional[str] = None) -> List[torch.Tensor]: x = torch.from_numpy(df.values).float() if device: x = x.to(device) return [x] def convert_y(self, df: pd.DataFrame, device: Optional[str] = None) -> List[torch.Tensor]: y = torch.from_numpy(df.values) if self._target_tensor_type: y = y.to(self._target_tensor_type) if self._squeeze_target_tensor: y = y.squeeze() if device: y = y.to(device) return [y]