import logging from typing import Optional from pandas import DataFrame, read_parquet, to_datetime from freqtrade.configuration import TimeRange from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, TradeList from freqtrade.enums import CandleType from .idatahandler import IDataHandler logger = logging.getLogger(__name__) class ParquetDataHandler(IDataHandler): _columns = DEFAULT_DATAFRAME_COLUMNS def ohlcv_store( self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType) -> None: """ Store data in json format "values". format looks as follows: [[<date>,<open>,<high>,<low>,<close>]] :param pair: Pair - used to generate filename :param timeframe: Timeframe - used to generate filename :param data: Dataframe containing OHLCV data :param candle_type: Any of the enum CandleType (must match trading mode!) :return: None """ filename = self._pair_data_filename(self._datadir, pair, timeframe, candle_type) self.create_dir_if_needed(filename) data.reset_index(drop=True).loc[:, self._columns].to_parquet(filename) def _ohlcv_load(self, pair: str, timeframe: str, timerange: Optional[TimeRange], candle_type: CandleType ) -> DataFrame: """ Internal method used to load data for one pair from disk. Implements the loading and conversion to a Pandas dataframe. Timerange trimming and dataframe validation happens outside of this method. :param pair: Pair to load data :param timeframe: Timeframe (e.g. "5m") :param timerange: Limit data to be loaded to this timerange. Optionally implemented by subclasses to avoid loading all data where possible. :param candle_type: Any of the enum CandleType (must match trading mode!) :return: DataFrame with ohlcv data, or empty DataFrame """ filename = self._pair_data_filename( self._datadir, pair, timeframe, candle_type=candle_type) if not filename.exists(): # Fallback mode for 1M files filename = self._pair_data_filename( self._datadir, pair, timeframe, candle_type=candle_type, no_timeframe_modify=True) if not filename.exists(): return DataFrame(columns=self._columns) pairdata = read_parquet(filename) pairdata.columns = self._columns pairdata = pairdata.astype(dtype={'open': 'float', 'high': 'float', 'low': 'float', 'close': 'float', 'volume': 'float'}) pairdata['date'] = to_datetime(pairdata['date'], unit='ms', utc=True, infer_datetime_format=True) return pairdata def ohlcv_append( self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType ) -> None: """ Append data to existing data structures :param pair: Pair :param timeframe: Timeframe this ohlcv data is for :param data: Data to append. :param candle_type: Any of the enum CandleType (must match trading mode!) """ raise NotImplementedError() def trades_store(self, pair: str, data: TradeList) -> None: """ Store trades data (list of Dicts) to file :param pair: Pair - used for filename :param data: List of Lists containing trade data, column sequence as in DEFAULT_TRADES_COLUMNS """ # filename = self._pair_trades_filename(self._datadir, pair) raise NotImplementedError() # array = pa.array(data) # array # feather.write_feather(data, filename) def trades_append(self, pair: str, data: TradeList): """ Append data to existing files :param pair: Pair - used for filename :param data: List of Lists containing trade data, column sequence as in DEFAULT_TRADES_COLUMNS """ raise NotImplementedError() def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> TradeList: """ Load a pair from file, either .json.gz or .json # TODO: respect timerange ... :param pair: Load trades for this pair :param timerange: Timerange to load trades for - currently not implemented :return: List of trades """ raise NotImplementedError() # filename = self._pair_trades_filename(self._datadir, pair) # tradesdata = misc.file_load_json(filename) # if not tradesdata: # return [] # return tradesdata @classmethod def _get_file_extension(cls): return "parquet"