""" CalmarHyperOptLoss This module defines the alternative HyperOptLoss class which can be used for Hyperoptimization. """ from datetime import datetime import numpy as np from pandas import DataFrame from freqtrade.optimize.hyperopt import IHyperOptLoss from freqtrade.data.btanalysis import calculate_max_drawdown class CalmarHyperOptLoss(IHyperOptLoss): """ Defines the loss function for hyperopt. This implementation uses the Calmar Ratio calculation. """ @staticmethod def hyperopt_loss_function(results: DataFrame, trade_count: int, min_date: datetime, max_date: datetime, *args, **kwargs) -> float: """ Objective function, returns smaller number for more optimal results. Uses Calmar Ratio calculation. """ total_profit = results["profit_ratio"] days_period = (max_date - min_date).days # adding slippage of 0.1% per trade total_profit = total_profit - 0.0005 expected_returns_mean = total_profit.sum() / days_period # calculate max drawdown try: _, _, _, high_val, low_val = calculate_max_drawdown(results) max_drawdown = -(high_val - low_val) / high_val except ValueError: max_drawdown = 0 if max_drawdown > 0: calmar_ratio = expected_returns_mean / max_drawdown * np.sqrt(365) else: calmar_ratio = -20. # print(calmar_ratio) return -calmar_ratio