# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement

import talib.abstract as ta
from pandas import DataFrame
from typing import Dict, Any, Callable, List
from functools import reduce

import numpy
from skopt.space import Categorical, Dimension, Integer, Real

import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.optimize.hyperopt_interface import IHyperOpt

class_name = 'SampleHyperOpts'


# This class is a sample. Feel free to customize it.
class SampleHyperOpts(IHyperOpt):
    """
    This is a test hyperopt to inspire you.
    More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
     You can:
    - Rename the class name (Do not forget to update class_name)
    - Add any methods you want to build your hyperopt
    - Add any lib you need to build your hyperopt
     You must keep:
    - the prototype for the methods: populate_indicators, indicator_space, buy_strategy_generator,
    roi_space, generate_roi_table, stoploss_space
    """

    @staticmethod
    def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
        dataframe['adx'] = ta.ADX(dataframe)
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['mfi'] = ta.MFI(dataframe)
        dataframe['rsi'] = ta.RSI(dataframe)
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)
        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['sar'] = ta.SAR(dataframe)
        return dataframe

    @staticmethod
    def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
        """
        Define the buy strategy parameters to be used by hyperopt
        """
        def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
            """
            Buy strategy Hyperopt will build and use
            """
            conditions = []
            # GUARDS AND TRENDS
            if 'mfi-enabled' in params and params['mfi-enabled']:
                conditions.append(dataframe['mfi'] < params['mfi-value'])
            if 'fastd-enabled' in params and params['fastd-enabled']:
                conditions.append(dataframe['fastd'] < params['fastd-value'])
            if 'adx-enabled' in params and params['adx-enabled']:
                conditions.append(dataframe['adx'] > params['adx-value'])
            if 'rsi-enabled' in params and params['rsi-enabled']:
                conditions.append(dataframe['rsi'] < params['rsi-value'])

            # TRIGGERS
            if params['trigger'] == 'bb_lower':
                conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
            if params['trigger'] == 'macd_cross_signal':
                conditions.append(qtpylib.crossed_above(
                    dataframe['macd'], dataframe['macdsignal']
                ))
            if params['trigger'] == 'sar_reversal':
                conditions.append(qtpylib.crossed_above(
                    dataframe['close'], dataframe['sar']
                ))

            dataframe.loc[
                reduce(lambda x, y: x & y, conditions),
                'buy'] = 1

            return dataframe

        return populate_buy_trend

    @staticmethod
    def indicator_space() -> List[Dimension]:
        """
        Define your Hyperopt space for searching strategy parameters
        """
        return [
            Integer(10, 25, name='mfi-value'),
            Integer(15, 45, name='fastd-value'),
            Integer(20, 50, name='adx-value'),
            Integer(20, 40, name='rsi-value'),
            Categorical([True, False], name='mfi-enabled'),
            Categorical([True, False], name='fastd-enabled'),
            Categorical([True, False], name='adx-enabled'),
            Categorical([True, False], name='rsi-enabled'),
            Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
        ]

    @staticmethod
    def generate_roi_table(params: Dict) -> Dict[int, float]:
        """
        Generate the ROI table that will be used by Hyperopt
        """
        roi_table = {}
        roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
        roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
        roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
        roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0

        return roi_table

    @staticmethod
    def stoploss_space() -> List[Dimension]:
        """
        Stoploss Value to search
        """
        return [
            Real(-0.5, -0.02, name='stoploss'),
        ]

    @staticmethod
    def roi_space() -> List[Dimension]:
        """
        Values to search for each ROI steps
        """
        return [
            Integer(10, 120, name='roi_t1'),
            Integer(10, 60, name='roi_t2'),
            Integer(10, 40, name='roi_t3'),
            Real(0.01, 0.04, name='roi_p1'),
            Real(0.01, 0.07, name='roi_p2'),
            Real(0.01, 0.20, name='roi_p3'),
        ]